http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural Networks  Published: 09 Oct 2015  Category: deep_learning Tutorials Popular Training Approaches of DNNs — A Quick Overview https://medium.com/@asjad/p…
Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely easy with high-quality libraries such as Torch and Theano. These libraries are really helpful for rapidly prototyping deep learning models even witho…
1,概述 模型量化属于模型压缩的范畴,模型压缩的目的旨在降低模型的内存大小,加速模型的推断速度(除了压缩之外,一些模型推断框架也可以通过内存,io,计算等优化来加速推断). 常见的模型压缩算法有:量化,剪枝,蒸馏,低秩近似以及紧凑模型设计(如mobileNet)等操作.但在这里有些方法只能起到缩减模型大小,而起不到加速的作用,如稀疏化剪枝.而在现代的硬件设备上,其实更关注的是模型推断速度.今天我们就讲一种既能压缩模型大小,又能加速模型推断速度:量化. 量化一般可以分为两种模式:训练后的量化(po…
一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 或者coursera看Andrew Ng 的机器学习课程.二者只是在某些公式表达上有细微的差距. 二. 卷积神经网络CONVNET 此部分来自 http://m.blog.csdn.net/ar…
该笔记是我快速浏览论文后的记录,部分章节并没有仔细看,所以比较粗糙. 从摘要中可以得知,论文提出在每次训练时通过随机忽略一半的feature detectors(units)可以极大地降低过拟合.该方法能够防止feature detectors之间的complex co-adaptations,即feature detectors只有在一些其它特定的feature detectors存在时才能发挥作用的情况.经过实验证明,随机dropout能够在许多任务中带来很大的性能提升. 在训练集上通过使用…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图像为例,我们人为的加一些东西,然后会急剧的降低网络的分类正确率.比如下图: 在生成对抗样本之后,分类器把alps 以高置信度把它识别成了狗,下面的一幅图,是把puffer 加上一些我们人类可能自己忽视的东西,但是对分类器来说,这个东西可能很重要,这样分类器就会去调节它,这就导致分类器以百分之百的置信…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduction 1 Reinforcement learning with a network of spiking agents 2 Related Work 2.0.1 Hedonism 2.0.2 Learning by reinforcement in spiking neural network…
年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        …