首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Kafka消息的压缩机制
】的更多相关文章
Kafka消息的压缩机制
最近在做 AWS cost saving 的事情,对于 Kafka 消息集群,计划通过压缩消息来减少消息存储所占空间,从而达到减少 cost 的目的.本文将结合源码从 Kafka 支持的消息压缩类型.何时需要压缩.如何开启压缩.何处进行解压缩以及压缩原理来总结 Kafka 整个消息压缩机制.文中所涉及源码部分均来自于 Kafka 当前最新的 3.3.0-SNAPSHOT 版本. Kafka支持的消息压缩类型 什么是 Kafka 的消息压缩 在谈消息压缩类型之前,我们先看下 Kafka 中关于消息…
kafka消息的处理机制(五)
这一篇我们不在是探讨kafka的使用,前面几篇基本讲解了工作中的使用方式,基本api的使用还需要更深入的去钻研,多使用才会有提高.今天主要是探讨一下kafka的消息复制以及消息处理机制. 1. broker的注册 Kafka使用Zookeeper来维护集群成员的信息.每个broker都有一个唯一标识符,这个标识符可以在配置文件里指定,也可以自动生成.在kafka启动的时候,他通过创建临节点把自己的id注册到zk,kafka组件订阅zk的/broker/ids路径(broker在zk上的注册路径)…
Kafka(3)--kafka消息的存储及Partition副本原理
消息的存储原理: 消息的文件存储机制: 前面我们知道了一个 topic 的多个 partition 在物理磁盘上的保存路径,那么我们再来分析日志的存储方式.通过 [root@localhost ~]# ls /tmp/kafka-logs/firstTopic-1/命令找到对应 partition 下的日志内容: 00000000000000000000.index 00000000000000000000.log 00000000000000000000.timein…
spark streaming 接收kafka消息之四 -- 运行在 worker 上的 receiver
使用分布式receiver来获取数据使用 WAL 来实现 exactly-once 操作: conf.set("spark.streaming.receiver.writeAheadLog.enable","true") // 开启 WAL // 1.At most once - 每条数据最多被处理一次(0次或1次),这种语义下会出现数据丢失的问题: // 2.At least once - 每条数据最少被处理一次 (1次或更多),这个不会出现数据丢失,但是会出现数…
Kafka消息丢失
1.Kafka消息丢失的情况: (1)auto.commit.enable=true,消费端自动提交offersets设置为true,当消费者拉到消息之后,还没有处理完 commit interval 提交间隔就到了,提交了offersets.这时consummer又挂了,重启后,从下一个offersets开始消费,之前的消息丢失了. (2)网络负载高.磁盘很忙,写入失败,又没有设置消息重试,导致数据丢失. (3)磁盘坏了已落盘数据丢失. (4)单 批 数 据 的 长 度 超 过 限 制 会 丢…
Kafka文件的存储机制
Kafka文件的存储机制 同一个topic下有多个不同的partition,每个partition为一个目录,partition命名的规则是topic的名称加上一个序号,序号从0开始. 每一个partition目录下的文件被平均切割成大小相等(默认一个文件是500兆,可以手动去设置)的数据文件,每一个数据文件都被称为一个段(segment file),但每个段消息数量不一定相等,这种特性能够使得老的segment可以被快速清除.默认保留7天的数据. 每个partition下都会有这些每500兆一…
kafka消息的分发与消费
关于 Topic 和 Partition: Topic: 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来说,不同的 topic 的消息是分开存储的,每个 topic 可以有多个生产者向它发送消息,也可以有多个消费者去消费其中的消息. Partition: 每个 topic 可以划分多个分区(每个 Topic 至少有一个分区),同一 topic 下的不同分区包含的消息是不同的.每个消息在被添加到分区时,…
基于Kafka消息驱动最终一致事务(一)
基本可用软状态最终一致事务 本用例分两个数据库分别是用户库和交易库,不使用分布式事务,使用基于消息驱动实现基本可用软状态最终一致事务(BASE).现在说明下事务逻辑演化步骤,尊从CAP原则,即分布式系统不能全部确保一致性.可用性.分区容错性,只能三选二.文章里从一致性模式讨论,例子里每次出售物品时,将一行添加到交易表中,并更新买方和卖方的数量. 使用ACID风格的事务这是强一致性事务,SQL将如图所示.…
kafka 数据一致性-leader,follower机制与zookeeper的区别;
我写了另一篇zookeeper选举机制的,可以参考:zookeeper 负载均衡 核心机制 包含ZAB协议(滴滴,阿里面试) 一.zookeeper 与kafka保持数据一致性的不同点: (1)zookeeper使用了ZAB(Zookeeper Atomic Broadcast)协议,保证了leader,follower的一致性,leader 负责数据的读写,而follower只负责数据的读,如果follower遇到写操作,会提交到leader; 当leader宕机的话,使用 Fast Lead…
apache kafka消息服务
apache kafka中国社区QQ群:162272557 apache kafka参考 http://kafka.apache.org/documentation.html 消息队列分类: 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息.这里要注意: 消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息. Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费. 发布/订阅 消息生产者(发布)将消息…
一文看懂Kafka消息格式的演变
摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topic将被分为多个partition(分区).每个partition在…
转载来自朱小厮博客的 一文看懂Kafka消息格式的演变
转载来自朱小厮博客的 一文看懂Kafka消息格式的演变 ✎摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topi…
spark streaming 接收kafka消息之二 -- 运行在driver端的receiver
先从源码来深入理解一下 DirectKafkaInputDStream 的将 kafka 作为输入流时,如何确保 exactly-once 语义. val stream: InputDStream[(String, String, Long)] = KafkaUtils.createDirectStream [String, String, StringDecoder, StringDecoder, (String, String, Long)]( ssc, kafkaParams, fromO…
spark streaming 接收kafka消息之五 -- spark streaming 和 kafka 的对接总结
Spark streaming 和kafka 处理确保消息不丢失的总结 接入kafka 我们前面的1到4 都在说 spark streaming 接入 kafka 消息的事情.讲了两种接入方式,以及spark streaming 如何和kafka协作接收数据,处理数据生成rdd的 主要有如下两种方式 基于分布式receiver 基于receiver的方法采用Kafka的高级消费者API,每个executor进程都不断拉取消息,并同时保存在executor内存与HDFS上的预写日志(write-a…
Kafka到底有几个Offset?——Kafka核心之偏移量机制
Kafka是由LinkIn开源的实时数据处理框架,目前已经更新到2.3版本.不同于一般的消息中间件,Kafka通过数据持久化和磁盘读写获得了极高的吞吐量,并可以不依赖Storm,SparkStreaming的流处理平台,自己进行实时的流处理. Kakfa的Offset机制是其最核心机制之一,由于API对于部分功能的实现,我们有时并没有手动去设置Offset,那么Kafka到底有几个Offset呢? 一.生产者Offset 首先,我们先来看生产者的offset,我们知道Kafka是通过…
kafka消息深入学习
Kafka是一个分布式的基于发布/订阅模式的消息队列,主要应用于大数据实时处理领域. 1 快写 快读 看下面的图: 传统应用是 硬件到缓存,到应用 再socket进行传输,再进行网络传输,再到用户, 而kafka实现了零拷贝,但是其实也是拷贝一次,将数据拷贝到内存中,,同时也是将数据顺序存入磁盘,这个点我们可以体会到,例如传输数据的时候,如果很多小文件,那么拷贝的就特别慢,如果拷贝大文件就特别快,kafka就是利用到这一点做到了快写,然后零拷贝,进行了快读. 2 生产者消息的可靠性保证…
源码分析 Kafka 消息发送流程(文末附流程图)
温馨提示:本文基于 Kafka 2.2.1 版本.本文主要是以源码的手段一步一步探究消息发送流程,如果对源码不感兴趣,可以直接跳到文末查看消息发送流程图与消息发送本地缓存存储结构. 从上文 初识 Kafka Producer 生产者,可以通过 KafkaProducer 的 send 方法发送消息,send 方法的声明如下: Future<RecordMetadata> send(ProducerRecord<K, V> record) Future<RecordMetada…
第1节 kafka消息队列:1、kafka基本介绍以及与传统消息队列的对比
1. Kafka介绍 l Apache Kafka是一个开源消息系统,由Scala写成.是由Apache软件基金会开发的一个开源消息系统项目. l Kafka最初是由LinkedIn开发,并于2011年初开源.2012年10月从Apache Incubator毕业.该项目的目标是为处理实时数据提供一个统一.高通量.低等待的平台. l Kafka是一个分布式消息队列:生产者.消费者的功能.它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现. l Kafka对…
kafka Poll轮询机制与消费者组的重平衡分区策略剖析
注意本文采用最新版本进行Kafka的内核原理剖析,新版本每一个Consumer通过独立的线程,来管理多个Socket连接,即同时与多个broker通信实现消息的并行读取.这就是新版的技术革新.类似于Linux I/O模型或者Select NIO 模型. Poll为什么要设置一个超时参数 条件: 1:获取足够多的可用数据 2:等待时间超过指定的超时时间. 目的在于让Consumer主线程定期的""苏醒"去做其他事情.比如:定期的执行常规任务,(比如写日志,写库等). 获取消息,…
源码分析 Kafka 消息发送流程
Futuresend(ProducerRecord<K, V> record) Futuresend(ProducerRecord<K, V> record, Callback callback) 从上面的 API 可以得知,用户在使用 KafkaProducer 发送消息时,首先需要将待发送的消息封装成 ProducerRecord,返回的是一个 Future 对象,典型的 Future 设计模式.在发送时也可以指定一个 Callable 接口用来执行消息发送的回调. 我们在学习…
Kafka消费与心跳机制
1.概述 最近有同学咨询Kafka的消费和心跳机制,今天笔者将通过这篇博客来逐一介绍这些内容. 2.内容 2.1 Kafka消费 首先,我们来看看消费.Kafka提供了非常简单的消费API,使用者只需初始化Kafka的Broker Server地址,然后实例化KafkaConsumer类即可拿到Topic中的数据.一个简单的Kafka消费实例代码如下所示: public class JConsumerSubscribe extends Thread { public static void ma…
Kafka消息(存储)格式及索引组织方式
要深入学习Kafka,理解Kafka的存储机制是非常重要的.本文介绍Kafka存储消息的格式以及数据文件和索引组织方式,以便更好的理解Kafka是如何工作的. Kafka消息存储格式 Kafka为了保证消息的可靠性,服务端会将接收的消息进行序列化并保存到磁盘上(Kafka的多副本存储机制),这里涉及到消息的存储格式,即消息编码后落到磁盘文件上的二进制的数据格式.下图是根据Kafka 3.0官方文档整理的消息格式: 包含三个部分:BatchRecords.Record,以及Header的编码格式.…
RabbitMQ,RocketMQ,Kafka 消息模型对比分析
消息模型 消息队列的演进 消息队列模型 发布订阅模型 RabbitMQ的消息模型 交换器的类型 direct topic fanout headers Kafka的消息模型 RocketMQ的消息模型 参考 消息模型 消息队列的演进 消息队列模型 早起的消息队列是按照"队列"的数据结构来设计的. 生产者(Producer)产生消息,进行入队操作,消费者(Consumer)接收消息,就是出队操作,存在于服务端的消息容器就称为消息队列. 当然消费者也可能不止一个,存在的多个消费者是竞争的关…
实际业务处理 Kafka 消息丢失、重复消费和顺序消费的问题
关于 Kafka 消息丢失.重复消费和顺序消费的问题 消息丢失,消息重复消费,消息顺序消费等问题是我们使用 MQ 时不得不考虑的一个问题,下面我结合实际的业务来和你分享一下解决方案. 消息丢失问题 比如我们使用 Kakfa 时,以下场景都会发生消息丢失: producer -> broker (生产者生产消息) broker -> broker (集群环境,broker 同步给其他 broker) broker -> consumer (消费者消费消息) 解决方案也很简单,设置 acks…
线上kafka消息堆积,consumer掉线,怎么办?
线上kafka消息堆积,所有consumer全部掉线,到底怎么回事? 最近处理了一次线上故障,具体故障表现就是kafka某个topic消息堆积,这个topic的相关consumer全部掉线. 整体排查过程和事后的复盘都很有意思,并且结合本次故障,对kafka使用的最佳实践有了更深刻的理解. 好了,一起来回顾下这次线上故障吧,最佳实践总结放在最后,千万不要错过. 1.现象 线上kafka消息突然开始堆积 消费者应用反馈没有收到消息(没有处理消息的日志) kafka的consumer group上看…
Kafka消息时间戳(kafka message timestamp)
最近碰到了消息时间戳的问题,于是花了一些功夫研究了一下,特此记录一下. Kafka消息的时间戳 在消息中增加了一个时间戳字段和时间戳类型.目前支持的时间戳类型有两种: CreateTime 和 LogAppendTime 前者表示producer创建这条消息的时间:后者表示broker接收到这条消息的时间(严格来说,是leader broker将这条消息写入到log的时间) 为什么要加入时间戳? 引入时间戳主要解决3个问题: 日志保存(log retention)策略:Kafka目前会定…
IM消息送达保证机制实现(二):保证离线消息的可靠投递
1.前言 本文的上篇<IM消息送达保证机制实现(一):保证在线实时消息的可靠投递>中,我们讨论了在线实时消息的投递可以通过应用层的确认.发送方的超时重传.接收方的去重等手段来保证业务层面消息的不丢不重. 但实时在线投递针对的是消息收发双方都在线的情况(如当发送方用户A发送消息给接收方用户B时,用户B是在线的),那如果消息的接收方用户B不在线,系统是如何保证消息的可达性的呢?这就是本文要讨论的问题.(本文同步发布于:http://www.52im.net/thread-594-1-1.html)…
ENode 1.0 - 消息的重试机制的设计思路
项目开源地址:https://github.com/tangxuehua/enode 上一篇文章,简单介绍了enode框架中消息队列的设计思路,本文介绍一下enode框架中关系消息的重试机制的设计思路. 对于一个EDA架构为基础的框架,核心就是消息驱动,然后基于最终一致性的原则.所以,非常重要的一点是,如果消息一次执行不成功,那该怎么办?我能想到的对策就是消息的重试.我发现,这篇文章比较难写,因为感觉要把复杂的事情清晰的表达出来,感觉确实不容易.说到重试,那什么是消息的重试呢?怎么重试呢?我这里…
【转】跟我学Kafka之NIO通信机制
from:云栖社区 玛德,今天又被人打脸了,小看人,艹,确实,相对比起来,在某些方面差一点,,,,该好好捋捋了,强化下短板,规划下日程,,,引以为耻,铭记于心. 跟我学Kafka之NIO通信机制 main 2016-03-31 16:54:06 浏览166 评论0 摘要: 很久没有做技术方面的分享了,今天闲来有空写一篇关于Kafka通信方面的文章与大家共同学习. 一.Kafka通信机制的整体结构 这个图采用的就是我们之前提到的SEDA多线程模型,链接如下:http://www.jianshu…
Kafka 消息监控 - Kafka Eagle
1.概述 在开发工作当中,消费 Kafka 集群中的消息时,数据的变动是我们所关心的,当业务并不复杂的前提下,我们可以使用 Kafka 提供的命令工具,配合 Zookeeper 客户端工具,可以很方便的完成我们的工作.随着业务的复杂化,Group 和 Topic 的增加,此时我们使用 Kafka 提供的命令工具,已预感到力不从心,这时候 Kafka 的监控系统此刻便尤为显得重要,我们需要观察消费应用的详情. 监控系统业界有很多杰出的开源监控系统.我们在早期,有使用 KafkaMonitor 和…