有监督的图像翻译——Pix2Pix】的更多相关文章

Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们提出了StarGAN方法,这是一个新型的可扩展的方法,能够仅使用一个单一模型就实现多领域的图像翻译.StarGAN这样的统一模型的结构允许在单个网络上同时训练带有不同领域的多个数据集.这使得StarGAN的翻译图像质量优于现有的模型,并具有将输入图像灵活地翻译到任意目标域的新能力.通过实验,验证了该…
无监督域对抗算法:ICCV2019论文解析 Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Lee_Drop_to_Adapt_Learning_Discriminative_Features_for_Unsupervised_Domain_Adaptation…
写在前面:一篇魏云超博士的综述论文,完整题目为<基于DCNN的图像语义分割综述>,在这里选择性摘抄和理解,以加深自己印象,同时达到对近年来图像语义分割历史学习和了解的目的,博古才能通今!感兴趣的请根据自己情况找来完整文章阅读学习. 图像的语义分割是计算机视觉中重要的基本问题之一,其目标是对图像的每个像素点进行分类,将图像分割为若干个视觉上有意义的或感兴趣的区域,以利于后续的图像分析和视觉理解.近年来,深度卷积神经网络(Deep Convolutional Neural Network, DCN…
[导读]今天,DeepMind爆出一篇重磅论文,引发学术圈热烈反响:基于最强图像生成器BigGAN,打造了BigBiGAN,在无监督表示学习和图像生成方面均实现了最先进的性能!Ian Goodfellow也称赞"太酷了!" GAN在图像合成方面一次次让人们惊叹不已! 例如,被称为史上最强图像生成器的BigGAN--许多人看到BigGAN生成的图像都要感叹"太逼真了!DeepMind太秀了吧!" BigGAN生成的逼真图像 这不是最秀的.今天,DeepMind的一篇新…
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neurips.github.io/ 配有MelGAN解码器的音乐翻译网络:https://www.descript.com/overdub 摘要 以前的工作(Donahue等人,2018a:Engel等人,2019a)已经发现用GAN生成相干的原始音频波形是一个挑战.在本文中,我们证明了通过引入一系列结…
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) 给(爱情)动作片中的女孩穿(tuo)衣服 生成式模型 上一篇<用GAN生成二维样本的小例子>中已经简单介绍了GAN,这篇再简要回顾一下生成式模型,算是补全一个来龙去脉. 生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用…
干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码) 该博客来源自:https://mp.weixin.qq.com/s?__biz=MzA4NzE1NzYyMw==&mid=2247492203&idx=5&sn=3020c3a43bd4dd678782d8aa24996745&chksm=903f1c73a74895652ee688d070fd807771e3fe6a8947f77f3a15a44a65557da0313ac5ad592c…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…
11 December 2019 20:32 来自 <https://zhuanlan.zhihu.com/p/44563641>     StarGAN StarGAN是CVPR2018最新提出来的,用于多领域的图像迁移学习. 代码地址(Pytorch):https://github.com/yunjey/StarGAN --------------------------------------------------------------------------------------…
注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇.可是在深度学习,GAN领域,其进展都是以月来计算的,感觉那两篇综述有些老了.最近发现有一篇最新的 GAN 综述论文(How Generative Adversarial Networks and Their Variants Work: An Over…