Luogu5020 货币系统 (完全背包)】的更多相关文章

我那个新的货币系统,就是把原来的货币系统中能被其他数表示的数删掉 那我就算有多少数能被别的数表示,那肯定是要被比它小的表示 于是排个序做完全背包就好了 但是我太zz不会完全背包,然后写了个bitset乱搞还开了250000,T到亲妈都不认识 其实完全背包就是把背包的从后往前更新变成了从前往后更新 #include<cstdio> #include<cstring> #include<algorithm> #include<bitset> using name…
bool型完全背包 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) for(register int a = (b); a <= (c); ++ a) #define nR(a,b,c) for(register int a = (b); a >= (c); -…
题目大意:给定 N 个数,求在这 N 个数中至少选出几个数能表示出所有数字,输出最少的个数. 题解:由于只有小的数字可以表示大的数字,因此首先需要对这 N 个数字进行从小到大排序.排序之后就变成一道不定个数的数字组合问题,即:完全背包思想.遍历每一个数字,若该数字不能由之前的数字表示出来,则将答案加一,并将这个数字能够表示的数字进行记录即可. 代码如下 #include <bits/stdc++.h> using namespace std; const int maxn=110; const…
Code: #include<cstdio> #include<string> #include<cstring> #include<algorithm> using namespace std; int arr[1000],f[100000],A[100000],bomb[100000]; void setIO(string a){ freopen((a+".in").c_str(),"r",stdin); freo…
$Luogu$ 去年我这题获得了$20$的好分数$ovo..........$ $Sol$ 现在来看其实非常显然叭,只要把能被别的数表示出来的数去掉就好了. $f[i]$表示$i$数能否被其他数表示.完全背包就好辣.但有一点不同的是$f[i]$是能否被其他数表示,而不是能否被表示.把$a[i]$从小到大排序,最外层循环到$a[i]$时检查$f[i]$是否为$1$,累计答案. $Code$ #include<iostream> #include<cstdio> #include<…
题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单位面值组成的. 母牛想知道有多少种不同的方法来用货币系统中的货币来构造一个确定的数值. 举例来说, 使用一个货币系统 {1,2,5,10,...}产生 18单位面值的一些可能的方法是:18x1, 9x2, 8x2+2x1, 3x5+2+1,等等其它. 写一个程序来计算有多少种方法用给定的货币系统来构…
题目链接:https://www.luogu.org/problemnew/show/P1474 题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单位面值组成的. 母牛想知道有多少种不同的方法来用货币系统中的货币来构造一个确定的数值. 举例来说, 使用一个货币系统 {1,2,5,10,...}产生 18单位面值的一些可能的方法是:18x1, 9x2…
Description 母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统. [In their own rebellious way],,他们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单位面值组成的. 母牛想知道有多少种不同的方法来用货币系统中的货币来构造一个确定的数值. 举例来说, 使用一个货币系统 {1,2,5,10,...}产生 18单位面值的一些可能的方法是:18x1, 9x2, 8x2+2x1, 3x5+2+1,等等其…
传送门 Description 在网友的国度中共有 \(n\) 种不同面额的货币,第 \(i\) 种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为 \(n\).面额数组为 \(a[1..n]\) 的货币系统记作 \((n,a)\). 在一个完善的货币系统中,每一个非负整数的金额 \(x\) 都应该可以被表示出,即对每一个非负整数 \(x\),都存在 \(n\) 个非负整数 \(t[i]\) 满足 \(a[i] \times t[i]\) 的和为 \(…
题目传送门 看到题目瞬间想起某凯的疑惑,感觉不会做....然后观察样例可以知道,去掉原来货币系统中能够被其他币值凑出来的数就是答案(样例分析法),然后就完事了(huaji). 简单理解一下吧: 首先,去掉原来货币系统中能够被其他币值凑出来的数形成的新的货币系统能够凑出原来就能够凑出来的数,这个很好理解.设原来的货币系统为$A$,假设存在一个比上文所述更优的答案货币系统为$B$,则有$x$属于$A$,$x$不能由$A$中的一些数拼成,且$x$不属于$B$,$x$能由$B$中的一些数拼成.那么$B$…