计算机科学一大定律:许多看似过时的东西可能过一段时间又会以新的形式再次回归. 1 模型平均方法(MA) 1.1 算法描述与实现 我们在博客<分布式机器学习:同步并行SGD算法的实现与复杂度分析(PySpark)>中介绍的SSGD算法由于通信比较频繁,在通信与计算比较大时(不同节点位于不同的地理位置),难以取得理想的加速效果.接下来我们介绍一种通信频率比较低的同步算法--模型平均方法(Model Average, MA)[1].在MA算法中,每个工作节点会根据本地数据对本地模型进行多轮的迭代更新…
1. 梯度计算式导出 我们在博客<统计学习:逻辑回归与交叉熵损失(Pytorch实现)>中提到,设\(w\)为权值(最后一维为偏置),样本总数为\(N\),\(\{(x_i, y_i)\}_{i=1}^N\)为训练样本集.样本维度为\(D\),\(x_i\in \mathbb{R}^{D+1}\)(最后一维扩充),\(y_i\in\{0, 1\}\).则逻辑回归的损失函数为: \[\mathcal{l}(w) = \sum_{i=1}^{N}\left[y_{i} \log \pi_{w}\l…
1. PageRank的两种串行迭代求解算法 我们在博客<数值分析:幂迭代和PageRank算法(Numpy实现)>算法中提到过用幂法求解PageRank. 给定有向图 我们可以写出其马尔科夫概率转移矩阵\(M\)(第\(i\)列对应对\(i\)节点的邻居并沿列归一化) \[\left(\begin{array}{lll} 0 & 0 & 1 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 1 & 0 \end{a…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学习方法","深度学习方法","三十分钟理解"原创系列 2017年3 月,谷歌大脑负责人 Jeff Dean 在 UCSB 做了一场题为<通过大规模深度学习构建智能系统>的演讲[9].Jeff Dean 在演讲中提到,当前的做法是: 解决方案 = 机…
引子 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/46676515 又是好久没写博客,记得有一次看Ng大神的訪谈录,假设每周读三篇论文,那么经年以后,必定成为对某个领域非常熟悉的人. 可惜,在忙忙碌碌中,我居然做不到这一点. 可是,我眼下的打算是尽心尽力的去做,哪怕一周仅仅读一篇呢. 胡适先生曾说过:"怕什么真理无穷,进一步有进一步的欢喜".然而.这当中的差别在于,我还没有达到追求真理的高度,我就是想看看这个技术是咋子回事…
Angel是腾讯开源的一个分布式机器学习框架.是一个PS模式的分布式机器学习框架. https://github.com/Angel-ML/angel   这是github地址. 我了解的分布式机器学习概述: 对于分布式机器学习,有些简单的了解,听过一些概念.最近正在看<分布式机器学习 算法.理论与实践>这本书,我觉得这本书很不错.一下内容也是我的一个读书总结. 分布式机器学习分为 数据和模型划分模块,单机优化模块,通信模块,数据和模型的聚合模块. 分布式机器学习从并行方式来说分为数据并行和模…
       原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台让开发者快速实现一个高度定制化的深度神经网络. Minerva在系统设计上使用分层的设计原则,将"算的快"这一对于系统底层的需求和"好用"这一对于系统接口的需求隔离开来,如图3所示.在接口上,我们提供类似numpy的用户接口,力图做到友好并且能充分利用Python和nu…
1 分布式机器学习概述 大规模机器学习训练常面临计算量大.训练数据大(单机存不下).模型规模大的问题,对此分布式机器学习是一个很好的解决方案. 1)对于计算量大的问题,分布式多机并行运算可以基本解决.不过需要与传统HPC中的共享内存式的多线程并行运算(如OpenMP)以及CPU-GPU计算架构做区分,这两种单机的计算模式我们一般称为计算并行). 2)对于训练数据大的问题,需要将数据进行划分并分配到多个工作节点(Worker)上进行训练,这种技巧一般被称为数据并行.每个工作节点会根据局部数据训练出…
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型…
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims to automating the task of ML pipeline construction. The optimizer solves a search problem over feature extractors and ML algorithms included inMLI and…
https://blog.csdn.net/starzhou/article/details/72819374 2017-05-27 19:15:36     GMIS 2017    10 0 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕.中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃为本次大会做了开幕式致辞,他表示:「我个人的看法是再过几年,我们90%的工作是人工智能提供的,就像我们今天大部分工作是机器提供…
1.损失函数和风险函数 (1)损失函数:常见的有 0-1损失函数  绝对损失函数  平方损失函数  对数损失函数 (2)风险函数:损失函数的期望      经验风险:模型在数据集T上的平均损失 根据大数定律,当N趋向于∞时,经验风险趋向于风险函数 2.模型评估方法 (1)训练误差与测试误差 训练误差:关于训练集的平均损失 测试误差:定义模型关于测试集的平均损失.其反映了学习方法对未知测试数据集的预测能力 (2)泛化误差:学到的模型对未知数据的预测能力.其越小,该模型越有效.泛化误差定义为所学习模…
在现在机器学习如日中天的大背景下,微软亚洲研究院的实习岗位中,机器学习组的工作也是维护DMTK,参与算法改进,那么在此之前我们得了解DMTK是个啥. DMTK由一个服务于分布式机器学习的框架和一组分布式机器学习算法构成,是一个将机器学习算法应用在大数据上的强大工具包:无论是学术界的研究人员还是工业界的开发者,DMTK可以帮助他们在超大规模数据上灵活稳定地训练大规模机器学习模型. 官网:http://www.dmtk.io/ DMTK 包括以下几个项目: DMTK framework(Multiv…
转载:http://www.cnblogs.com/aigongsi/archive/2012/10/11/2718313.html 这一几天一直在回顾事务相关的知识,也准备把以前了解皮毛的知识进行一些深入总结,虽然这一些知识并没有用到,但是了解其实现原理还是很有必要的,因为知道了原理,你也能把它实现出来. 在上一节事务的编程模型里面,主要说明了三种编程模型,一般情况下,我们都接触的是单一资源的事务,也就是单独对一个数据库进行操作.如果需要跨多个资源保证事务一致性 举个例子:在ATM机取钱的时候…
0.引言  利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑:   使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是…
0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD随机梯度下降模型,Stochastic Gradient Descent 3. SVC支持向量分类模型,Support Vector Classification 4. MLP多层神经网络模型,Multi-Layer Perceptron 主要内容:生成手写体随机数1-9,生成单个png分类存入指定…
本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. 先决条件 本文假设您对Docker有一定的了解.构建和部署示例应用程序还需要以下软件/依赖项.重要的是要注意应用程序是在Ubuntu 16.04 PC上构建的,但所有软件都是跨平台的,应该适用于任何环境. Docker Azure CLI .NET Core 2.0 Docker Hub Accou…
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方…
在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环境比如Java,为了上一个机器学习模型去大动干戈修改环境配置很不划算,此时我们就可以考虑用预测模型标记语言(Predictive Model Markup Language,以下简称PMML)来实现跨平台的机器学习模型部署了. 1. PMML概述 PMML是数据挖掘的一种通用的规范,它用统一的XML…
这一几天一直在回顾事务相关的知识,也准备把以前了解皮毛的知识进行一些深入总结,虽然这一些知识并没有用到,但是了解其实现原理还是很有必要的,因为知道了原理,你也能把它实现出来. 在上一节事务的编程模型里面,主要说明了三种编程模型,一般情况下,我们都接触的是单一资源的事务,也就是单独对一个数据库进行操作.如果需要跨多个资源保证事务一致性 举个例子:在ATM机取钱的时候,需要对用户的账户进行扣款处理,然后发送一条消息给消息服务器(假设消息服务器是用JMS实现的),由消息服务器异步通过短信通知用户.如果…
https://zhuanlan.zhihu.com/p/42214716 本文是“基于Tensorflow高阶API构建大规模分布式深度学习模型系列”的第五篇,旨在通过一个完整的案例巩固一下前面几篇文章中提到的各类高阶API的使用方法,同时演示一下用tensorflow高阶API构建一个比较复杂的分布式深度学习模型的完整过程. 文本要实现的深度学习模型是阿里巴巴的算法工程师18年刚发表的论文<Entire Space Multi-Task Model: An Effective Approach…
1. 什么是API 当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用.然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Python训练模型,开发同学用Java写业务代码,这时候,Api就作为一种解决方案被使用. 简单地说,API可以看作是顾客与商家之间的联系方式.如果顾客以预先定义的格式提供输入信息,则商家将获得顾客的输入信息并向其提供结果. 从本质上讲,API非常类似于web应用程序,但它没有提供一个样式良好的HTML…
0.引言 介绍了如何生成手写体数字的数据,提取特征,借助 sklearn 机器学习模型建模,进行识别手写体数字 1-9 模型的建立和测试. 用到的几种模型: 1. LR,Logistic Regression, (线性模型)中的逻辑斯特回归 2. Linear SVC,Support Vector Classification, (支持向量机)中的线性支持向量分类  3. MLPC,Multi-Layer Perceptron Classification,    (神经网络)多层感知机分类 4…
scikit-learn系列之如何存储和导入机器学习模型   如何存储和导入机器学习模型 找到一个准确的机器学习模型,你的项目并没有完成.本文中你将学习如何使用scikit-learn来存储和导入机器学习模型.你可以把你的模型保持到文件中,然后再导入内存进行预测. 1. 用Pickle敲定你的模型 Pickle是python中一种标准的序列化对象的方法.你可以使用pickle操作来序列化你的机器学习算法,保存这种序列化的格式到一个文件中.稍后你可以导入这个文件反序列化你的模型,用它进行新的预测.…
混沌系统以及机器学习模型 概述: 必要条件下: negative values of the sub-Lyapunov exponents. 通过rc方法, 可以在参数不匹配的情况下,实现输入信号,混沌系统中实现同步: 第一段: 混沌系统的同步是一个非线性问题: 分析了混沌系统同步的历史, 和分类(完全同步,相位同步,滞后同步,广义同步汉化) 第二段: 和往常的混沌系统方程已知不同,我们采用机器学习方法应用于未知方程的混沌模型: 通过RC,一个输入信号可以应用于混沌模型: 层叠式的同步也可以应用…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这…
1. Python环境设置和Flask基础 使用"Anaconda"创建一个虚拟环境.如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,"Anaconda"发行版是一个不错的选择. 安装here wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh source…
Jerry之前的两篇文章介绍了如何通过Restful API的方式,消费SAP Leonardo上预先训练好的机器学习模型: 如何在Web应用里消费SAP Leonardo的机器学习API 部署在SAP Cloud Platform CloudFoundry环境的应用如何消费 当时Jerry提到,Product Image Classification API只支持29种产品类别: 如果我们开发应用时需要支持额外的产品类别,就得需要自行提供该产品类别的图片并重新训练. 下面是SAP Leonar…
本篇文章转载于LIME:一种解释机器学习模型的方法 该文章介绍了一种模型对单个样本解释分类结果的方法,区别于对整体测试样本的评价指标准确率.召回率等,Lime为具体某个样本的分类结果做出解释,直观地表明该模型为何做出如此预测. 动机:我们为什么要理解预测结果? 机器学习如今是非常火的一个话题.随着计算机在围棋等游戏中击败人类专家,许多人不禁要问机器是否也能胜任司机的工作,甚至是取代医生? 现在很多前沿的机器学习模型还是一个黑盒,几乎无法去感知它的内部工作状态.这就给我们带来了可信度的问题:我该相…