6. RDD综合练习:更丰富的操作】的更多相关文章

不多说,直接上干货! transformation操作 惰性求值 (1)RDD 的转化操作都是惰性求值的.这意味着在被调用行动操作之前Spark不会开始计算. (2)读取数据到RDD的操作也是惰性的. (3)惰性求值的好处: a. Spark 使用惰性求值可以把一些操作合并到一起来减少计算数据的步骤.在类似 Hadoop MapReduce 的系统中,开发者常常花费大量时间考虑如何把操作组合到一起,以减少MapReduce 的周期数. b. 而在Spark 中,写出一个非常复杂的映射并不见得能比…
集合运算练习 union(), intersection(),subtract(), cartesian() 内连接与外连接 join(), leftOuterJoin(), rightOuterJoin(), fullOuterJoin() 多个考勤文件,签到日期汇总,出勤次数统计 三.综合练习:学生课程分数 网盘下载sc.txt文件,通过RDD操作实现以下数据分析: 持久化 scm.cache() 总共有多少学生?map(), distinct(), count() 开设了多少门课程? 生成…
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以有许多分区(partitions),每个分区又拥有大量的记录(records). 五个特征: dependencies:建立RDD的依赖关系,主要rdd之间是宽窄依赖的关系,具有窄依赖关系的rdd可以在同一个stage中进行计算. partition:一个rdd会有若干个分区,分区的大小决定了对这个…
不多说,直接上干货! action操作  …
本篇博客中的操作都在 ./bin/pyspark 中执行. 对单个 Pair RDD 的转化操作 下面会对 Pair RDD 的一些转化操作进行解释.先假设我们有下面这些RDD(在pyspark中操作): nums = sc.parallelize( [ (1,2) ,(3,4) ,(3,6) ] ) x = sc.parallelize( [ (1,[2,4,5]) ,(4,[7,8,0]) ,(4,[6,7,5])] ) reduceByKey 概述:合并具有相同键值的值. 例子: >>&…
http://blog.csdn.net/pipisorry/article/details/53257188 弹性分布式数据集RDD(Resilient Distributed Dataset) 术语定义 l弹性分布式数据集(RDD): Resillient Distributed Dataset,Spark的基本计算单元,可以通过一系列算子进行操作(主要有Transformation和Action操作): l有向无环图(DAG):Directed Acycle graph,反应RDD之间的依…
常用Transformation 注:某些函数只有PairRDD只有,而普通的RDD则没有,比如gropuByKey.reduceByKey.sortByKey.join.cogroup等函数要根据Key进行分组或直接操作 RDD基本转换: RDD[U] map(f: T => U) T:原RDD中元素类型 U:新RDD中元素类型 函数将T元素转换为新的U元素 rdd.map(x => x + 1) {1, 2, 3, 3} =>{2, 3, 4, 4} RDD[U] flatMap(f…
下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回一个仅包含值的RDD: sortByKey:返回一个根据键值排序的RDD: flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录: mapValues:对Pair RDD里每一个值应用一个函数,但是不会对键值进行操作:…
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin 1.map(func) 2.flatMap(func) 3.mapPartitions(func) 4.mapPartitionsWithIndex(func) 5.simple(with…
弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的.RDD是一个容错的.可以被并行操作的元素集合.创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合:从外部存储系统中引用一个数据集.RDD的一大特性是分布式存储,分布式存储在最大的好处是可以让数据在不同工作节点并行存储,以便在需要数据时并行运算.弹性指其在节点存储时,既可以使用内存,也可已使用外存,为使用者进行大数据处理提供方便.除此之外,RDD的另一大特性是延迟计算,即一个完整的RDD运行任务被分为两部分:Tran…