插值方法 - Lagrange插值多项式】的更多相关文章

Lagrange插值多项式代码: 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Mar 25 15:43:42 2020 4 5 @author: 35035 6 """ 7 8 9 import numpy as np 10 11 # Lagrange插值多项式: 12 def Lagrange(x, y, xi): 13 '''x.y是array,xi是一个值,函数返回结果ans''' 14…
OpenCASCADE Interpolation - Lagrange eryar@163.com Abstract. Power basis polynomial is the most simple polynomial function. It also be called power series. OpenCASCADE provides basic computation functions for polynomial functions, such as evaluate th…
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验内容 求之f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式. 四.实验程序 import matplo…
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌套算法啊,见"Horner嵌套算法". 1. 单项式(Monomial)基插值 1)插值函数基 单项式基插值采用的函数基是最简单的单项式:$$\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_n…
MATLAB插  值  法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验目的 二.实验原理 三.实验程序 四.实验内容 五.解答 1. 程序 (1)Lagrange插值多项式 function [C, L,L1,l]=lagran1(X,Y) %输出C为插值多项式的系数,L为插值多项式,L1为l的系数,l为小l %输入数据表X=[];Y=[];行向量 m=length(X); L=ones(m,m); for k=1: m V=1; fo…
1. 已知函数在下列各点的值为   0.2 0.4 0.6 0.8 1.0   0.98 0.92 0.81 0.64 0.38 用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值. 程序: x=[0.2 0.4 0.6 0.8 1.0]; y=[0.98 0.92 0.81 0.64 0.38]; x0=[0.2 0.28 0.44 0.76 1 1.08]; [f,f0]=Lagrange(x,y,x0) function […
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点xi处成立(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验内容 求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式 四.实验程序 import matplotlib.…
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验程序 四.实验内容 求之f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式. 五.实验程序    sym…
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点xi处成立(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验内容 求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式 四.实验程序    (1).m文件 %输入的量:X…
拉格朗日插值(Lagrange interpolation)是一种多项式插值方法,指插值条件中不出现被插函数导数值,过n+1个样点,满足如下图的插值条件的多项式.也叫做拉格朗日公式.  这里以拉格朗日3次插值为例,利用C++进行实现: //利用lagrange插值公式 #include<iostream> using namespace std; double Lx(int i,double x,double* Arr) { ,fenmu=; ;k<;k++) { if (k==i) c…