飞桨paddlespeech语音唤醒推理C实现】的更多相关文章

唤醒功能,顾名思义,通过语音,唤醒服务,做我们想做的事情. 效果图(开启应用后说讯飞语音或者讯飞语点唤醒) 源码下载 地址:http://download.csdn.net/detail/q4878802/9023213 步骤 1. 创建应用,开通服务 地址:http://blog.csdn.net/q4878802/article/details/47762169 2. 下载SDK 我们要使用的是讯飞的付费功能,选择唤醒服务,点击下载以后,会提示没有购买.点击“购买服务”  点击购买一会看到付…
场景:进入程序后处于语音唤醒状态,当说到某个关键词的时候打开某个子界面(如:语音识别界面) 技术要点: 1. // 设置唤醒一直保持,直到调用stopListening,传入0则完成一次唤醒后,会话立即结束(默认0) mIvw.setParameter(SpeechConstant.KEEP_ALIVE, "1"); 2.添加资源文件appid.jet    很奇怪为什么这里demo里面不需要语法文件 关键代码: /*********************************语音…
从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入手写数字的图片,可识别出这个图片中的数字. 本任务用到的数据集为 MNIST 手写数字数据集,用于训练和测试模型.该数据集包含 60000 张训练图片. 10000 张测试图片.以及对应的分类标签文件,每张图片上是一个 0 ~ 9 的手写数字,分辨率为 28 * 28. 环境配置 直接去飞桨AI S…
提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件 11月5日,在『WAVE Summit+』2019 深度学习开发者秋季峰会上,百度对外发布基于 ERNIE 的语义理解开发套件,旨在为企业级开发者提供更领先.高效.易用的 ERNIE 应用服务,全面释放 ERNIE 的工业化价值,其中包含 ERNIE 轻量级解决方案,提速 1000倍! 今年 7 月,百度发布持续学习语义理解框架 ERNIE 2.0,在共计 16 个中英文任务上超越BERT.XLNET,取得了 SO…
前言: 当前准备重新在树莓派4B8G 上面搭载训练模型进行识别检测,训练采用了百度飞桨的PaddleX再也不用为训练部署环境各种报错发愁了,推荐大家使用. 关于在树莓派4B上面paddlelite的文章很多,特别是 诺亚方包 还有 耐心的小黑    的教程给了我很多指导,再此对他们表示感谢. 这次将采用最新的包进行部署,希望能将全过程记录下来跟大家做个分享 linux系统采用了官方最新的Raspberry Pi 64位系统   :Raspberry Pi OS with desktop http…
使用百度飞桨 API 例如:Resize Normalize,处理数据的时候. Resize:如果输入的图像是 PIL 读取的图像这个数据格式是 HWC ,Resize 就需要 HWC 格式的数据. Normalize:有 data_format 参数,把数据格式设为 data_format="HWC". 当数据处理完后把数据输入到网络模型的时候,网络模型一般都是 CHW,需要把数据格式转换一下,这样才能正常运行程序 C 通道数 H 高 W 宽 代码举例: import numpy a…
Ubuntu 百度飞桨 和 CUDA 的安装 1.简介 本文主要是 Ubuntu 百度飞桨 和 CUDA 的安装 系统:Ubuntu 20.04 百度飞桨:2.2 为例 2.百度飞桨安装 访问百度飞桨 进入"安装" 版本:2.2 稳定版 操作系统:Linux 安装方式:pip 计算平台:CUDA11.2 如果你想安装CPU版本计算平台选择 CPU # 百度 paddlepaddle gpu cuda 11.2 python3 -m pip install paddlepaddle-gp…
​ 参考文章: 深度剖析知识增强语义表示模型--ERNIE_财神Childe的博客-CSDN博客_ernie模型 ERNIE_ERNIE开源开发套件_飞桨 https://github.com/PaddlePaddle/ERNIE/blob/develop/README.zh.md 1.背景介绍 近年来,语义表示(language representation)技术的发展,使得 "预训练-微调" 作为解决NLP任务的一种新的范式开始出现.一个通用的表示能力强的模型被选择为语义表示模型,…
note it is not for arm pyaudio <= 3.6 version porcupine 3.5 3.6 not 3.7 code import struct import pyaudio import pvporcupine #porcupine = pvporcupine.create(keywords=['porcupine', 'ok google', "picovoice", "blueberry"]) porcupine =…
Paddle Inference原生推理库 深度学习一般分为训练和推理两个部分,训练是神经网络"学习"的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律,生成模型.有了训练好的模型,就要在线上环境中应用模型,实现对未知数据做出推理,这个过程在AI领域叫做推理部署.用户可以选择如下四种部署应用方式之一: 服务器端高性能部署:将模型部署在服务器上,利用服务器的高性能帮助用户处理推理业务. 模型服务化部署:将模型以线上服务的形式部署在服务器或者云端,用户通过客户端请求发送需要推理的…