李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航<统计学习算法>第三章56页:例3.3): 步骤 结点查询标记 栈内元素(本次循环结束后) 最近点 最近距离 说明 A B C D E F G 初始化 ABD M=空 Mdis = ∞ 初始化:先将S所在的区域找到,将经过的各个结点依次加入栈中,将查询标记初始化为0 循环 AB M=D Mdis = dis(S,D) 取出栈顶元素D,D被查询,更新D的标记为1,计算S与…
对大型网站,技术涉及面非常广,对硬件,软件,编程语言,Web Service,防火墙等等有很高要求.    面对大量用户,高并发请求,可以使用高性能服务器,高性能编程语言,高性能数据库,加大带宽等,这意味着巨大的投入. 如果你没有这样的打算,而又想获得更好的系统性能,则需要我们精打细算,从"软"的方面着手. 如果你有过以下的一些用法,或者有不同见解,请赐教. (1)Foreach比for有更好的执行效率.      Foreach所花的时间大约只有for的30%,通过测试结果,在两者都…
目录 github 搜索技巧 案例 普通搜 搭配技巧搜 限定词 查找某个用户或组织的项目 辅助限定词 还没搞懂的(关于 forks.mirror.issues) 排序(放的是官网的链接) 使用指南 练习案例 github 搜索技巧 参考自 B站 up 主 CodeSheep 的视频[如何高效地在网上找开源项目做!在职程序员实际演示一波视频教程操作],然后写着写着一好奇就去看文档了 现在这篇博客相当于官方文档的翻译版…
位姿检索使用了LSH方法,而不使用PNP方法,是有一定的来由的.主要的工作会转移到特征提取和检索的算法上面来,有得必有失.因此,放弃了解析的方法之后,又放弃了优化的方法,最后陷入了检索的汪洋大海. 0:转自wiki:http://en.wikipedia.org/wiki/Locality_sensitive_hashing 以下参考资料仅供参考:LSH理解及相关资料:http://s99f.blog.163.com/blog/static/35118365201262691335382/ 有一…
如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个过程中有两个值得关注的地方: 这可被视为是一个推荐系统和用户不断交互.互相影响的过程. 推荐系统需要对用户反馈作出快速及时的响应. 这两点本篇分别通过强化学习和 Flink 来实现,而在此之前先了解一些背景概念. 强化学习 强化学习领域的知名教材 <Reinforcement Learning: A…
1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法.LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也越高.LSH算法使用的关键是针对某一种相似度计算方法,找到一个具有以上描述特性的hash函数.LSH所要求的hash函数的准确数学定义比较复杂,以下给出一种通俗的定义方式: 对于集合S,集合内元素间相似度的计算公式为sim(*,*).如果存在一个hash函数h(*)满足以下条件:存在一个相似度s到概…
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),另一种是K近邻查询(K…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…