LLM并行训练6-激活优化】的更多相关文章

​  前言  目前比较常见的并行训练是数据并行,这是基于模型能够在一个GPU上存储的前提,而当这个前提无法满足时,则需要将模型放在多个GPU上.现有的一些模型并行方案仍存在许多问题,本文提出了一种名为PatrickStar的异构训练系统.PatrickStar通过以细粒度方式管理模型数据来更有效地使用异构内存,从而克服了这些缺点. 本文附上了PatrickStar的使用示例.PatrickStar与模型定义无关,在PyTorch脚本上添加几行代码可以带来端到端的加速. 本文来自公众号CV技术指南…
PyTorch 在学术圈里已经成为最为流行的深度学习框架,如何在使用 PyTorch 时实现高效的并行化? 在芯片性能提升有限的今天,分布式训练成为了应对超大规模数据集和模型的主要方法.本文将向你介绍流行深度学习框架 PyTorch 最新版本( v1.5)的分布式数据并行包的设计.实现和评估. 论文地址:https://arxiv.org/pdf/2006.15704.pdf PyTorch 是深度学习研究和应用中广泛使用的科学计算包.深度学习的最新进展证明了大型数据集和大型模型的价值,这需要扩…
文章目录 4.5 多GPU并行训练 4.5.1 torch.nn.DataParalle 4.5.2 torch.distributed 4.5.3 torch.utils.checkpoint import torch import torchvision torch.__version__ '1.0.0' 4.5 多GPU并行训练 在我们进行神经网络训练的时候,因为计算量巨大所以单个GPU运算会使得计算时间很长,使得我们不能够及时的得到结果,例如我们如果使用但GPU使用ImageNet的数据…
1 导引 我们在博客<Python:多进程并行编程与进程池>中介绍了如何使用Python的multiprocessing模块进行并行编程.不过在深度学习的项目中,我们进行单机多进程编程时一般不直接使用multiprocessing模块,而是使用其替代品torch.multiprocessing模块.它支持完全相同的操作,但对其进行了扩展. Python的multiprocessing模块可使用fork.spawn.forkserver三种方法来创建进程.但有一点需要注意的是,CUDA运行时不支…
多卡训练模式: 进行深度学习模型训练的时候,一般使用GPU来进行加速,当训练样本只有百万级别的时候,单卡GPU通常就能满足我们的需求,但是当训练样本量达到上千万,上亿级别之后,单卡训练耗时很长,这个时候通常需要采用多机多卡加速.深度学习多卡训练常见有两种方式,一种是数据并行化(data parallelism),另外一种是模型并行化(model parallelism). 深度模型训练方法: 深度学习模型的训练是一个迭代的过程,在每一轮迭代过程中,前向传播算法会根据当前参数的取值,计算出在一小部…
            本文是.Net中的并行编程第六篇,今天就介绍一些我在实际项目中的一些常用优化策略.      一.避免线程之间共享数据 避免线程之间共享数据主要是因为锁的问题,无论什么粒度的锁,最好的线程之间同步方式就是不加锁,这个地方主要措施就是找出数据之间的哪个地方需要共享数据和不需要共享数据的地方,再设计上避免多线程之间共享数据. 在以前做过的某项目,开始时设计的方案: 开始设计时所有的数据都放入到了公共队列,然后队列通知多个线程去处理数据,队列采用互斥锁保证线程同步,造成的结果就…
[源码解析] 模型并行分布式训练Megatron (5) --Pipedream Flush 目录 [源码解析] 模型并行分布式训练Megatron (5) --Pipedream Flush 0x00 摘要 0x01 背景 0x02 论文 2.1 引论 2.2 背景 2.3 流水线权重问题 2.3.1 问题1 2.3.2 问题2 2.3.3 问题3 2.4 PipeDream-2BW 系统设计 2.4.1 GPipe 2.4.2 Double-Buffered Weight Updates (…
[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 基本用法 2.2 将模型并行应用到现有模块 2.3 问题与方案 2.3.1 目前状况 2.3.2 解决方案 2.4 通过流水线输入加速 0x03 分布式问题和方案 3.1 思路 3.2 PyTorch 的思路 3.2.1 四大天王 3.2.2 逻辑关系 0x04 PyTorch 分布式优化器 4.…
MySQL 8.0 可以说是MySQL发展历史上里程碑式的一个版本,包括了多个重大更新,目前 Generally Available 版本已经已经发布,正式版本即将发布,在此将介绍8.0版本中引入的一个重要的新特性————基于 WriteSet 的并行复制方案,此方案号称是彻底解决困扰MySQL运维人员多年的复制延迟问题. 说到并行复制,这里简单的回顾一下各个版本的MySQL复制的演进,以帮助理解8.0版本中对并行复制MTS的优化. MySQL 主从复制模型 一切都要从MySQL的主从复制模型开…
   本章重点介绍的是基于 Java并行程序开发以及优化的方法,对于多核的 CPU,传统的串行程序已经很好的发回了 CPU性能,此时如果想进一步提高程序的性能,就应该使用多线程并行的方式挖掘 CPU的潜能.本章知识点:           常用的多线程设计模式,比如 Future模式,Master-Worker 模式,Guarded Suspeionsion模式.不变模式.生产者消费者模式等等.          JDK 内置的多线程框架和各种线程池技术:          JDK 内置的并发数…