LinearRegression线性回归】的更多相关文章

知识点 scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析. 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法. 我们将scikit-learn的线性回归算法应用于编程作业1.1的数据,并看看它的表现. 一般来说,只要觉得数据有线性关系,LinearRegression类是我们的首选.如果发现拟合或者预测的不好,再考虑用其他的线性回归库.如果是学习线性回归,推荐先从这个类开始第一步的研究. LinearRegression…
一.预测 先来看看这样一个场景: 假如你手头有一套房子要出售,你咨询了房产中介.中介跟你要了一系列的数据,例如房子面积.位置.楼层.年限等,然后进行一系列计算后,给出了建议的定价. 房产中介是如何帮你定价的? "中介"通过他多年的"从业"经验,知道哪些因素会影响房子的价格,且知道各自的"影响"有多大,于是在接过"你的房子"时,他就能通过自已的经验计算出"价格"了. 当然,这个价格,不同的中介,得到的也不同.…
LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($y = w*x + b$).并通过优化算法对训练数据进行训练.最终得出最优(全局最优解或局部最优)参数的过程. y:我们需要预测的数值: w:模型的参数(即我们需要通过训练调整的的值) x:已知的特征值 b:模型的偏移量 我们的目的是通过已知的x和y,通过训练找出合适的参数w和b来模拟x与y之间的关…
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model i…
简单线性回归 1.研究一个自变量(X)和一个因变量(y)的关系   简单线性回归模型定义:y=β0+β1x+ε 简单线性回归方程:E(y)=β0+β1x 其中: β0为回归线的截距 β1为回归线的斜率 通过训练数据,求取出估计参数建立的直线方程: 实际编程时,主要是根据已知训练数据,估计出β0和β1的值b0和b1 2.举例: 实际代码: import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset =…
# import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的…
机器学习-02 回归模型 线性回归 评估训练结果误差(metrics) 模型的保存和加载 岭回归 多项式回归 代码总结 线性回归 绘制图像,观察w0.w1.loss的变化过程 以等高线的方式绘制梯度下降的过程 薪水预测 评估误差 把训练好的模型存入文件 加载模型 封装预测模型对象,提供薪资预测服务 岭回归 如何选择合适的超参数C? 多项式回归 基于这组数据训练多项式回归模型 案例:波士顿房屋价格数据分析与房价预测 训练回归模型,预测房屋价格 回归模型 线性回归 输入 输出 0.5 5.0 0.6…
Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regression 回归 Clustering 非监督分类 Dimensionality reduction 数据降维 Model Selection 模型选择 Preprocessing 数据预处理 我们总能够从这些方法中挑选出一个适合于自己问题的, 然后解决自己的问题. 安装 Scikit-learn (…
Sklearn.model_selection(模型选择) Cross_val_score:交叉验证 Train_test_split:数据切割 GridsearchCV:网格搜索 Sklearn.metrics(覆盖了分类任务中大部分常用验证指标) Confusion_matrix(y_test,y_predict):混淆矩阵 Classification_report(y_test,y_predict):分类报告 Precision_score(test_y,prey):精确率 recall…
数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 20%, 75%: 25% sklearn数据集划分API: sklearn.model_selection.train_test_split 常用参数: 特征值和目标值 test_size:测试数据的大小,默认为0.25 返回值:训练数据特征值,测试数据特征值,训练数据目标值,测试数据目标值的元组…