直接使用递归的方法会导致TLE,加个缓存就好了: public class Solution { private Integer[] buff = new Integer[1000]; /* * @param n: an integer * @return: an ineger f(n) */ public int fibonacci(int n) { if(buff[n]!=null) return buff[n]; else if(n==1) return buff[1] = 0; else…
算法题目 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: * 前2个数是 0 和 1 . * 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 - 分析 斐波那契数列满足公式f(n) = f(n-1) + f(n-2),n > 0.这里我们的第一想法是使用递归,可是直接翻译公式出来的递归调用是这样的: int fib(int n) { if (n == 1) { return 0; }…
网址:https://leetcode.com/problems/fibonacci-number/ 原始的斐波那契数列 运用自底向上的动态规划最佳! 可以定义vector数组,但是占用较多内存空间 class Solution { public: int fib(int N) { int sum; ) ; ) ; vector<,); t[] = ; t[] = ; ;i<=N;i++) { t[i] = t[i-] + t[i-]; } return t[N]; } }; 直接定义三个变量…
HDU5914 题目链接 题意:有n根长度从1到n的木棒,问最少拿走多少根,使得剩下的木棒无论怎样都不能构成三角形. 题解:斐波纳契数列,a+b=c恰好不能构成三角形,暴力就好,推一下也可以. #include <cstdio> #include <iostream> #include <cstring> using namespace std; int main() { ; scanf("%d",&t); ]; memset(a,,size…
二.斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 1.递归法 1). 分析 斐波那契数列的标准公式为:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*) 根据公式可以直接写出: 2). 代码 public class Solution { public int Fibonacci(int n) { if(n<=1){ return n; } return F…
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, 就是因为用了递归, 递归时大量的出入栈操作必然比循环时间来得久 这题估摸着是每个测试样例就一个数, 记忆化的优势显示不出来, 但还是要认真看题 严格要求自己 记忆化搜索 vector<int> dp; int climbStairs(int n) { if (dp.size() <= 2)…
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方法可以爬到楼顶.1. 1 阶 + 1 阶2. 2 阶 示例 2: 输入: 3输出: 3解释: 有三种方法可以爬到楼顶.1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶 设 $f[n]$ 表示跳上 $n$ 级台阶的方案数目,因此很容易得到 $f[n] = f[n-1…
缓存 cache 作用就是将一些常用的数据存储起来 提升性能 cdn //-----------------分析解决递归斐波那契数列<script> //定义一个缓存数组,存储已经计算出来的斐波那契数 //1.计算的步骤 //1.先从cache数组中去取想要获取的数字 //2.如果获取到了,直接使用 //3.如果没有获取到,就去计算,计算完之后,把计算结果存入cache,然后将结果返回 // var cache = []; // // function fib(n){ // //1.从cach…
[思路] a.因为两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1); b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2) c.由a.b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2) d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2 e.可以发现最终得出的是一个斐波那契数列. 由于直接用递归会超时,于是用数组来存储每一个位置的走法数目.代码如下: cla…
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160 参与人数:7267  时间限制:1秒  空间限制:32768K 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项 Fibonacci(int n). 分析: 用递归会TLE,因为有不少地方进行了重复计算,改为循环即可解决(迭代法…