引言 其实最近挺纠结的,有一点点焦虑,因为自己一直都期望往自然语言处理的方向发展,梦想成为一名NLP算法工程师,也正是我喜欢的事,而不是为了生存而工作.我觉得这也是我这辈子为数不多的剩下的可以自己去追求自己喜欢的东西的机会了.然而现实很残酷,大部分的公司算法工程师一般都是名牌大学,硕士起招,如同一个跨不过的门槛,让人望而却步,即使我觉得可能这个方向以后的路并不如其他的唾手可得的路轻松,但我的心中却一直有一股信念让我义无反顾,不管怎样,梦还是要有的,万一实现了呢~ <br />![](https…
代码仓库: https://github.com/brandonlyg/cute-dl 目标         上阶段cute-dl已经可以构建基础的RNN模型.但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务.具体包括: 添加嵌入层, 为文本寻找高效的向量表示. 添加类别抽样函数, 根据模型输出的类别分布抽样得到生成的文本. 使用imdb-review数据集验证文本分类模型. 使用一个古诗数据集验证文本生成模型.         这阶段涉及到的代码比…
目录 一.监督式分类:建立在训练语料基础上的分类 特征提取器和朴素贝叶斯分类器 过拟合:当特征过多 错误分析 二.实例:文本分类和词性标注 文本分类 词性标注:"决策树"分类器 三.更近一步的连续分类或贪婪序列分类:在朴素贝叶斯和"决策树"之后 四.评估 五.三种分类器的总结 六.后记 关于分类文本,有三个问题 怎么识别出文本中用于明显分类的特征 怎么构建自动分类文本的模型 相关的语言知识 按照这个思路,博主进行了艰苦学习(手动捂脸..) 一.监督式分类:建立在训练…
一.数据集介绍 数据来源:今日头条客户端 数据格式如下: 6551700932705387022_!_101_!_news_culture_!_京城最值得你来场文化之旅的博物馆_!_保利集团,马未都,中国科学技术馆,博物馆,新中国 6552368441838272771_!_101_!_news_culture_!_发酵床的垫料种类有哪些?哪种更好?_!_ 6552407965343678723_!_101_!_news_culture_!_上联:黄山黄河黄皮肤黄土高原.怎么对下联?_!_ 65…
概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch.Keras和TensorFlow等深度学习框架,实现最先进的体系结构变得非常容易.这些框架提供了一种简单的方法来实现复杂的模型体系结构和算法,而只需要很少的概念知识和代码技能.简而言之,它们是数据科学社区的一座金矿! 在本文中,我们将使用PyTorch,它以其快速的计算能力而闻名.因此,在本文中,…
原创作者 | 苏菲 论文来源: https://aclanthology.org/2020.emnlp-main.668/ 论文题目: Text Graph Transformer for Document Classification (文本图Tranformer在文本分类中的应用) 论文作者: Haopeng Zhang Jiawei Zhang 01 引言 文本分类是自然语言处理中的基本任务之一,而图神经网络(GNN)技术可以描述词语.文本以及语料库,最近研究者将GNN应用到抓取语料库中单…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 http://blog.csdn.net/han_xiaoyang/article/details/50629587 声明:版权所有,转载请联系作者并注明出处 1. 引言 上一篇文章我们主要从理论上梳理了朴素贝叶斯方法进行文本分类的基本思路.这篇文章我们主要从实践上探讨一些应用过程中的tricks,并进一步分…
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本 .非线性及高维模式识别 中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小 原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(或称泛化能力).SVM理论的学习,请参…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…