​  前言 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积网络,从而获得更好的性能. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. ​ 论文:https://arxiv.org/abs/2203.03952 代码:https://github.com/hkzhang91/EdgeFormer 核心内容 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积…
http://blog.csdn.net/shadow_guo/article/details/51767036 原文标题为“R-FCN: Object Detection via Region-based Fully Convolutional Networks ”,作者代季峰 1,14年毕业的清华博士到微软亚洲研究院的视觉计算组,CVPR 16 两篇一作的会议主持人~ ╰(°▽°)╯ 同时公布了源码~ 2 后面主要内容为原文随便的翻译或概括.必有不紧贴原文原意之处,曲解请指出,否则求放过~…
摘要:我们提出了一个使用卷积网络进行分类.定位和检测的集成框架.我们展示了如何在ConvNet中有效地实现多尺度和滑动窗口方法.我们还介绍了一种新的深度学习方法,通过学习预测对象边界来定位.然后通过边界框累积而不是抑制边界框以增加检测置信度.我们证明了使用一个共享网络可以同时学习不同的任务.该集成框架是ImageNet大型视觉识别挑战2013(ILSVRC2013)本地化任务的获胜者,在检测和分类任务方面取得了非常有竞争力的成果.在赛后工作中,我们为检测任务建立了一个新的技术状态.最后,我们从我…
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics Tracklet Association MTT MOT 读 'B. Wang, L. Wang, et.al. Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association[j],…
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内容:1. 神经网络的定义2. 训练方法:error函数,梯度下降,后向传导3. 正则化:几种主要方法,重点讲卷积网络 书上提到的这些内容今天先不讲了,以后有时间再讲:BP在Jacobian和Hessian矩阵中求导的应用:混合密度网络:贝叶斯解释神经网络. 首先是神经网络的定义,先看一个最简单的神经…
载入MNIST数据集.创建默认Interactive Session. 初始化函数,权重制造随机噪声打破完全对称.截断正态分布噪声,标准差设0.1.ReLU,偏置加小正值(0.1),避免死亡节点(dead neurons). 卷积层函数,tf.nn.conv2d,TensorFlow 2 维卷积函数,参数x输入,W卷积参数,卷积核尺寸,channel个数,卷积核数量(卷积层提取特征数量).Strides卷积模板移动步长,全1代表不遗漏划过图片每一个点.Padding代表边界处理方式,SAME边界…
背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳. 全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature m…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
加州大学洛杉矶分校在PLOS Computing Biology上发表了一篇文章,分析了深度卷积网络(DCNN)和人类识别物体方法的不同:深度卷积网络(DCNN)是依靠物体的纹理进行识别,而人类是依靠物体的轮廓进行识别.如对下面的图a,人类依靠轮廓很快就能识别出这是一只熊,速度和准确性超过深度卷积网络(DCNN):但是如果把熊的图片分成若干部分,再打乱,如图b所示,人类要识别出这是一只熊就很困难了,而深度卷积网络(DCNN)可以很容易的识别出来.这是因为人类是依靠物体的全局信息和轮廓去识别一个物…
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同. 记号:  i,o,k,p,s i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size input size,卷积/反卷积输出大小 output size output size,卷积/反卷积核大小 kerne…