转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格朗日乘子法的解决方案是: L(X,λ)=f(X)+μh(X); μ:Rm 此时,求解L对X和μ的偏导同时为零就可以得到最优解了. 增广拉格朗日乘子法的解决方案是: Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2 每…
对偶上升法 增广拉格朗日乘子法 ADMM 交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种解决可分解凸优化问题的简单方法,尤其在解决大规模问题上卓有成效,利用ADMM算法可以将原问题的目标函数等价的分解成若干个可求解的子问题,然后并行求解每一个子问题,最后协调子问题的解得到原问题的全局解,适用于大规模分布式优化问题. Lasso的ADMM求解算法…
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化问题的方法,不…
[整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下…
拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其为零,可求得候选最优值. (2)有等式约束的优化问题:, 使用拉格朗日乘子法,把等式约束用一个系数与写为一个式子,称为拉格朗日函数.再通过对各个参数求取导数,联立等式进行求取最优值. (3)有不等式约束的优化问题.,,. 把所有的不等式约束.等式约束和目标函数全部写为一个式子:. KKT条件的最优值…
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解. 1. 拉格朗日乘子法: 这个问题转换为 其中,称为拉格朗日乘子. wikipedia上对拉格朗日乘子法的合理性解释: 现有一个二维的优化问题: 我们可以画图来辅助思考. 绿线标出的是约束的点的轨迹.蓝线是的等高线.箭头表示斜率,和…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格朗日乘子法的解决方案是: L(X,λ)=f(X)+μh(X); μ:Rm 此时,求解L对X和μ的偏导同时为零就可以得到最优解了. 增强拉格朗日乘子法的解决方案是: Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2 每次求出一个xi,然后按照梯度更新参数μ,c每次迭代逐渐增大(使用ALM方法好像还有…
拉格朗日乘子法: KKT条件:…
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解. 无约束优化 首先考虑一个不带任何约束的优化问题,对于变量 $ x \in \mathbb{R}…
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 等式约束问题的必要条件: 一个条件,两变量 \(min f(x)=f([x]_1,[x]_2)\) \(s.t. c(x)=c([x]_1,[x]_2)=0\) 则最优解的必要条件如下面式子所示: \(\triangledown f(x^*)+\alpha^* \triangledown c(x^*…
1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 KKT 条件.当然,这两个方法求得的结果只是必要条件,只有当目标函数是凸函数的情况下,才能保证是充分必要条件. 1.1 最优化问题三种约束条件 1:无约束条件 解决方法通常是函数对变量求导,令导函数等于0的点可能是极值点,将结果带回原函数进行验证. 2:等式约束条件 设目标函数为 $f(…
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:…
拉格朗日乘子法是解决极值问题的方法. 本方法是计算多元函数在约束条件下的极值问题的方法. 1.多元函数与约束问题 如下图所示,f(x,y)为多元函数,g(x,y)=c为约束条件.目的是计算在约束条件下多元函数的极值. 虚线为f(x,y)=d d取不同的值时,将原始图像投影到xy平面时的等高线,在等高线上的f函数值相等: 淡蓝色实线为g(x,y)为xy平面的曲线,对应于不同的(x,y).比如g(x,y)=x+y=1,即x+y=1为约束条件. 那么怎样去寻找极值点? 思路:沿着g(x,y)曲线不断前…
参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 梯度为0, 其实就是说明里面每一个参数的偏导数都为0. 拉格朗日乘子法是对于等式约束. KKT条件是针对不等式约束条件. 拉格朗日乘子法结论 如果有个约束等式: 只需解如下方程组: KKT条件 求如下的极值: 通过解下面这个方程组来得到答案: 这个方程组也就是所谓的KKT条件. 进一步解释下方程组的…
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法主要解决的问题为: 等式的约束条件和不等式的条件约束. 拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数. 等约束条件的解决方法不在赘述. 对于非等约束条件的求解,需要满足KKT条件才能进行求解.下面对于KKT条件进行分析. 不等式约束优化问题: 得到拉格朗日乘子法的求解方程:…
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原始问题变为对偶问题来求解 1. 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解.而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了.而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问…
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情…
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题.对于无约束优化问题: \(\min\limits_\boldsymbol{x} f(\boldsymbol{x})\) (本篇为形式统一,只考虑极小化问题),一般可直接求导并用梯度下降或牛顿法迭代求得最优值. 对于含有等式约束的优化问题,即: \[ \begin{aligned} {\min_{\…
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其运用在有约束条件下 2.1 投影法 2.1.1 梯度下降法 to 投影梯度法 2.1.2 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来…
原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i(x_1,x_2,...,x_n)=0\) 引入松弛变量\(\alpha _1-\alpha _m\),构造拉格朗日函数如下: \[L(x_1,x_2,...,x_n,\alpha _1,\alpha _2,...,\alpha _m)=f(x_1,x_2,...,x_n)+\sum\limits_{…
拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2 \] \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2) \] \[\dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1=0\…
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几…
[NOI2012] 骑行川藏 输入文件:bicycling.in   输出文件:bicycling.out   评测插件 时间限制:1 s   内存限制:128 MB NOI2012 Day1 Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地.同时合理分配好自己的体力是一件非常重要的事情. 由于蛋蛋装备了一辆非常好的自…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…