首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Numpy入门 - 数组基本运算
】的更多相关文章
Numpy入门 - 数组基本运算
本节主要讲解numpy数组的基本运算,包括两数组相加.相减.相乘和相除. 一.两数组相加add import numpy as np arr1 = np.array([[1, 2, 3], [4, 5, 6]]) arr2 = np.array([[1, 2, 1], [2, 1, 2]]) result = np.add(arr1, arr2) print(result) [[2 4 4] [6 6 8]] 二.两数组相减subtract import numpy as np arr1 = n…
Numpy入门 - 数组切片操作
本节主要演示数组的切片操作,数组的切片操作有两种形式:更改原数组的切片操作和不更改原数组的切片操作. 一.更改原数组的切片操作 import numpy as np arr = np.array([1, 2, 3, 4, 5, 6]) myarr = arr[1:3] myarr[:] = 0 print(arr) #这里并没有操作arr数组,但是数据却变了 [1 0 0 4 5 6] 二.不更改原数组的切片操作(使用copy方法) import numpy as np arr = np.arr…
Numpy入门 - 数组聚合运算
本节主要讲解numpy的几个常用的聚合运算,包括求和sum.求平均mean和求方差var. 一.求和sum import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) result = np.sum(arr) print(result) 21 二.求平均mean import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) result = np.mean(arr) print(resu…
Numpy入门 - 生成数组
今天是Numpy入门系列教程第一讲,首先是安装Numpy: $ pip install numpy numpy是高性能科学计算和数据分析的基础包,本节主要介绍生成连续二维数组.随机二维数组和自定义二维数组. 一.生成连续二维数组 import numpy as np np.arange(12).reshape(3, 4) array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) 二.生成随机二维数组 import numpy as np np.…
第一周——数据分析之表示 —— Numpy入门
数据的维度 从一个数据到一组数据 一个数据:表达一个含义 一组数据:表达一个或者多个含义 维度:一组数据的组织形式 一维数据 由对等关系的有序或者无序数据构成,采用线性方式组织,对应列表.数组和集合等概念 列表:数据类型可以不同 数组:数据类型相同 二维数据 由多个一维数据构成,是一维数据的组合形式 表格是典型的二维数据,其中,表头是二维数据的一部分. 多维数据 多维数据由一维或二维数据在新维度上扩展形成 高维数据 高维数据仅利用最基本的二元关系展示数据间的复杂结构 数据维度的Python表示:…
NumPy 迭代数组
NumPy 迭代数组 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. 接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代. 实例 import numpy as np a = np.arange(6).reshape(2,3) print ('原始数组是:') print (a) print ('\n') print ('迭代输出元素:') for x…
找出numpy array数组的最值及其索引
在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) a = np.arange(9).reshape((3,3)) a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) print(np.max(a)) #全局最大 8 print…
数据分析与展示---Numpy入门
概括: 一:数据维度 (一)一维数据 (二)二维数据 (三)多维数据 (四)高维数据 二:Numpy的数组对象:ndarray (一)Numpy介绍 (二)N维数组对象ndarray (三)ndarray的元素类型 (四)当ndarray数组由非同质对象构成时 三:ndarray数组的创建方法 (一)从python中的列,元组等类型创建ndarray数组 (二)使用Numpy中函数创ndarray数组,如:arange,ones,zeros等 (三)使用Numpy中其他函数创建ndarray数组…
python 工具 字符串转numpy浮点数组
不同的数字之间使用 空格“ ”,“$”,"*"等隔开,支持带小数点的字符串NumArray=str2num(LineString,comment='#')将字符串中的所有非Double类型的字符全部替换成空格 以'#'开头直至行尾的内容被清空 返回一维numpy.array数组 import numpy import scipy def str2num(LineString,comment='#'): from io import StringIO as StringIO import…
Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组.所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组.而轴的数量——秩,就是数组的维数. 很多时候可以声明 axis.axis=0,表示沿着第 0 轴进行操作,即对每一列进行操…
numpy使用数组进行数据处理
numpy使用数组进行数据处理 meshgrid函数 理解: 二维坐标系中,X轴可以取三个值1,2,3, Y轴可以取三个值7,8, 请问可以获得多少个点的坐标? 显而易见是6个: (1,7)(2,7)(3,7) (1,8)(2,8)(3,8) >>> import numpy as np#导入numpy >>> a=np.array([1,2,3])#创建一维数组 >>> b=np.array([7,8]) >>> res=np.me…
Numpy入门(一):Numpy的安装和创建
在数据分析和机器学习中,大量的使用科学计算,Numpy提供了大型矩阵计算的方式,而这些是python标准库中所缺少的.Numpy也是许多优秀的第三方库的基础,依赖于Numpy的库非常多,后续会慢慢的进行介绍. Numpy的安装 和许多的库一样,不管在windows平台下还是在linux平台下,安装Numpy的命令如下: pip install numpy 安装完以后: Collecting numpy Downloading numpy-1.14.0-cp27-none-win32.whl (9…
Python数据科学手册(2) NumPy入门
NumPy(Numerical Python 的简称)提供了高效存储和操作密集数据缓存的接口.在某些方面,NumPy 数组与 Python 内置的列表类型非常相似.但是随着数组在维度上变大,NumPy 数组提供了更加高效的存储和数据操作. 版本检查:(遵循传统,使用np作为别名导入NumPy) 2.1 理解Python中的数据类型 2.1.1 Python整形不仅仅是一个整形 Python 3.x 中的一个整型实际上包括 4 个部分. ob_refcnt 是一个引用计数,它帮助 Python 默…
python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
Lesson10——NumPy 迭代数组
NumPy 教程目录 NumPy 迭代数组 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. Example:使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代. a = np.arange(6).reshape(2,3) print('原始数组是') print(a) print('迭代输出元素') for x in np.nditer(a): print(x…
Numpy中数组的乘法
Numpy中数组的乘法 按照两个相乘数组A和B的维度不同,分为以下乘法: 数字与一维/二维数组相乘: 一维数组与一维数组相乘: 二维数组与一维数组相乘: 二维数组与二维数组相乘: numpy有以下乘法函数: *符号或者np.multiply:逐元素乘法,对应位置的元素相乘,要求shape相同 @符号或者np.matmul:矩阵乘法,形状要求满足(n,k),(k,m)->(n,m) np.dot:点积乘法 解释:点积,也叫内积,也叫数量积两个向量a = [a1, a2,-, an]和b = [b1…
numpy计算数组中满足条件的个数
Numpy计算数组中满足条件元素个数 需求:有一个非常大的数组比如1亿个数字,求出里面数字小于5000的数字数目 1. 使用numpy的random模块生成1亿个数字 2. 使用Python原生语法实现 3. 使用numpy的向量化操作实现 4. 对比下时间…
Numpy对数组按索引查询
Numpy对数组按索引查询 三种索引方法: 基础索引 神奇索引 布尔索引 基础索引 一维数组 和Python的List一样 二维数组 注意:切片的修改会修改原来的数组 原因:Numpy经常要处理大数组,避免每次都复制 神奇索引 其实就是:用整数数组进行的索引,叫神奇索引 数组中的整数就是索引值,如何排列,按着整数数组排列 一维数组 实例:获取数组中最大的前N个数字 二维数组 布尔索引 一维数组 二维数组 条件的组合…
Numpy入门(二):Numpy数组索引切片和运算
在Numpy中建立了数组或者矩阵后,需要访问数组里的成员,改变元素,并对数组进行切分和计算. 索引和切片 Numpy数组的访问模式和python中的list相似,在多维的数组中使用, 进行区分: 在python的list 下: a = [1,2,4] print a[2:] 打印出: [4] 这是一个数组,在Numpy的多维数组中也采用相同的模式进行数组的访问: import numpy as np a = np.arange(1,37) a = a.reshape(6,6) print a 打…
Python 学习笔记之 Numpy 库——数组基础
1. 初识数组 import numpy as np a = np.arange(15) a = a.reshape(3, 5) print(a.ndim, a.shape, a.dtype, a.size, a.itemsize) # 2 (3, 5) int64 15 8 ndim,数组的维度数,二维数组就是 2 shape,数组在各个维度上的长度,用元组表示 dtype,数组中元素的数据类型,比如 int32, float64 等 size,数组中所有元素的总数 itemsize,数组中每…
python numpy基础 数组和矢量计算
在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率, 类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单的例子 import numpy as np data=np.array([2,5,6,8,3]) #构造一个简单的数组 print(data) 结果: [2 5 6 8 3] data1=np.array([[2,5,6,8,3],np.arange(5)]) #构建一个二维数组 print(da…
NumPy入门及基础
1.1 NumPy 数组对象 NumPy中的ndarray是一个多维数组对象,该对象由两部分组成: 实际的数据; 描述这些数据的元数据. 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际数据. NumPy数组的下标也是从0开始的.数组元素的数据类型用专门的对象表示. 我们再次用arange函数创建数组,并获取其数据类型: In: a = arange(5) In: a.dtype Out: dtype('int64') 数组a的数据类型为int64(在我的机器上是这样),当然如果你…
Numpy入门 - 行列式转置
本章实例讲解如何将一个数组对象进行转置,我们可以使用.T将行列数据颠倒过来,看下面的代码: import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) myarr = arr.T print(myarr) [[1 4] [2 5] [3 6]]下面我们看看通过.T转置后,原数据是否发生了变化? import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) myarr = arr.T pr…
Numpy入门 - 数组排序
本节主要讲解numpy数组的排序方法sort的应用,包括按升序排列和按降序排列. 一.按升序排列 import numpy as np arr = np.array([[3, 1, 2], [6, 4, 5]]) arr.sort() print(arr) [[1 2 3] [4 5 6]] 二.按降序排列 import numpy as np arr = np.array([[3, 1, 2], [6, 4, 5]]) arr = -np.sort(-arr) print(arr) [[3 2…
面向矩阵的numpy入门笔记
我先声明我学numpy的目的:在python中使用矩阵(我需要在机器学习中使用矩阵),所以我的目的很明确,矩阵: 矩阵在numpy中叫ndarray(The N-dimensional array),我就是很喜欢问这个ndarray为啥叫ndarray,可是大多教程(特别是中文教程)都不说,这就不利于我们给ndarray一个形象的记忆. ndarray就是多维数组,叫这个是为了与python里的数组区分开来. 之后我们把目的细分,具体到这个库对应的函数(以下代码都省略了 import numpy…
NumPy入门
import numpy as np 数组与标量之间的运算作用于数组的每一个元素.…
numpy的数组常用运算练习
import numpy as np # 一维数组 print('==========# 一维数组===========') A = np.array([1, 2, 3, 4]) print(A) # 数组的维数可以通过 np.dim() 函数获得 print(np.ndim(A)) # 数组的形状可以通过实例变量 shape 获得 # 注意,这里的 A.shape 的结果是个元组(tuple). # 这是因为一维数组的情况下也要返回和多维数组的情况下一致的结果. # 例如,二维数组时返回的是元…
Numpy 创建数组
ndarray 数组除了可以使用底层 ndarray 构造器来创建外, 也可以通过以下几种方式来创建. numpy.empty numpy.empty 方法用来创建一个指定形状(shape),数据类型(dtype)且末初始化的数组: numpy.rmpty(shape, dtype = float, order = 'C') 参数说明: 参数 描述 shape 数组形状 dtype 数据类型, 可选 order 有‘C’和‘F’两个选项, 分别代表, 行优先和列优先, 在计算机内存中的存储元素的…
Python中的Numpy入门教程
1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 在以下的代码示例中,总是先导入了numpy: 代码如下: >>> import numpy as np>>> print np.version.version1.6.2 2.多维数…
NumPy:数组计算
一.MumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环对整组数据进行快速运算的数学函数 *读写磁盘数据的工具以及用于操作内存映射文件的工具 *线性代数.随机数生成和傅里叶变换功能 *用于集成C.C++等代码的工具 3.安装方法:pip install numpy4.引用方式:import numpy as np 二.NumPy:ndarray-多维数组…