NOIP2012junior—P1—质因数分解】的更多相关文章

NOIP2012junior-P1-质因数分解 时间: 1000ms / 空间: 131072KB [背景] NOIP2012[描述] 已知正整数n 是两个不同的质数的乘积,试求出较大的那个质数. [输入格式] 输入只有一行,包含一个正整数n . [输出格式] 输出只有一行,包含一个正整数p ,即较大的那个质数. [输入] 21 [输出] 7 [数据范围] 对于 60% 的数据 6 ≤ n ≤ 1000对于 100%的数据 6 ≤ n ≤ 2*10^9 [分析] 判断素数完全没有必要,,n是两个…
[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a叫做b的倍数. [质因数分解] 把一个正整数数分解成几个质数的幂相乘的形式叫做质因数分解. e.g. 10=2*5 16=24 18=2*32 [唯一分解定理] 唯一分解定理(算术基本定理)可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积: N=P1a1*P2a2*P…
目录 Miller-Rabin质数测试 & Pollard-Rho质因数分解 Miller-Rabin质数测试 一些依赖的定理 实现以及正确率 Pollard-Rho质因数分解 生日悖论与生日攻击 主要思想 具体实现 Miller-Rabin质数测试 & Pollard-Rho质因数分解 考试遇见卡质因数分解的题了...活久见...毒瘤lun 于是就学了一发qaq Pollard-Rho分解质因数的话需要依赖另一个算法. Miller-Rabin质数测试 一个多项式时间的基于随机的质数测试…
题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n: (3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.因为最后的答案可能很大,所以只要求输出答案 mod P的值.…
取数游戏 game bzoj-1978 BeiJing-2010 题目大意:给定一个$n$个数的$a$序列,要求取出$k$个数.假设目前取出的数是$a_j$,那么下次取出的$a_k$必须保证:$j<k$且$gcd(a_j,a_k)/reL$.问最多能取出多少个数. 注释:$1\le n\le 5\cdot 10^4$,$2\le L \le a_i\le 10^6$. 想法: 显然可以用动态规划解决. 状态:$dp_i$表示强制选第$i$个数,前$i$个数中最多能取多少个数. 转移是$O(n^2…
求:$a^{bx \%p}\equiv 1(\mod p)$ 的一个可行的 $x$. 根据欧拉定理,我们知道 $a^{\phi(p)}\equiv 1(\mod p)$ 而在 $a^x\equiv 1(\mod p)$ 这个式子中 $x$ 是存在很多个解的. 这些解之间存在着循环节,使得任意解 $x$ 可以被表示成循环节的倍数. 我们设这个循环节为 $cir$. 由于已知 $\phi(p)$ 一定是一个可行解,所以最小循环节一定是 $\phi(p)$ 的约数. 然后我们就可以对 $\phi(p)…
dC Loves Number Theory 题目大意:dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0) 数据范围:1<=N<=50000…
P1075 质因数分解 假期第一天就给一道入门难度的题写题解…… 这道题一开始就被我想复杂了:埃式筛,欧拉筛……然而开一个1e9的数组?不现实. 直到看到题解区的dalao用唯一分解定理: 算术基本定理可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积N=P1^a1*P2^a2*P3^a3......*Pn^an,这里P1<P2<P3......<Pn均为质数,其中指数ai是正整数.这样的分解称为 N 的标准分解式.最早证明是由欧几里得给出的. —…
前置 费马小定理(即若P为质数,则\(A^P\equiv A \pmod{P}\)). 欧几里得算法(GCD). 快速幂,龟速乘. 素性测试 引入 素性测试是OI中一个十分重要的事,在数学毒瘤题中有着举足轻重的地位. 常见的素性测试如下: int check(int N){ for(int i=2;i*i<=N;i++) if(N%i==0)return 0; return 1; } 以上是一个\(O(\sqrt{N})\)的算法,虽然不优,但在绝大多数情况下是可以的. 但是,假如\(N\)的范…
n!质因数分解后P的个数=n/p+n/(p*p)+n/(p*p*p)+......直到n<p*p*p*...*p //主要代码,就这么点东西,数学真是厉害啊!幸亏我早早的就退了数学2333 do { n/=m; w+=n; }while(n);…