第二部分:转化为对偶问题进一步简化 这一部分涉及的数学原理特别多.如果有逻辑错误希望可以指出来. 上一部分得到了最大间隔分类器的基本形式:   其中i=1,2,3...m 直接求的话一看就很复杂,我们还需要进一步简化. 这里就需要介绍拉格朗日乘子法.介绍它还是从最最简单的形式说起: 一.关于优化问题的最基本的介绍 优化问题这里面有很多东西,我先给出参考过的资料有,可以先看看这些资料自己总结一下,因为我觉得这部分内容很多人总结的都很好了: ①<支持向量机导论>的第五章最优化理论 ②刚买的<…
网上,书上有很多的关于SVM的资料,但是我觉得一些细节的地方并没有讲的太清楚,下面是我对SVM的整个数学原理的推导过程,其中逻辑的推导力求每一步都是有理有据.现在整理出来和大家讨论分享. 因为目前我的SVM的数学原理还没有过多的学习核函数,所以下面的整理都不涉及到核函数.而且因为很多地方我还没理解太透,所以目前我整理的部分主要分为: ①最大间隔分类器,其中包括优化目标的一步步推导,还有关于拉格朗日函数,KKT条件,以及对偶问题等数学优化的知识 ②软间隔优化形式,即加入了松弛变量的优化目标的一步步…
网上,书上有很多的关于SVM的资料,但是我觉得一些细节的地方并没有讲的太清楚,下面是我对SVM的整个数学原理的推导过程,其中我理解的地方力求每一步都是有理有据,希望和大家讨论分享. 首先说明,目前我的SVM的数学原理还没有过多的学习核函数,所以下面的整理都不涉及到核函数.而且因为很多地方我还没理解太透,所以目前我整理的部分主要分为: ①最大间隔分类器,其中包括优化目标的一步步推导,还有关于拉格朗日函数,KKT条件,以及对偶问题等数学优化的知识 ②软间隔优化形式,即加入了松弛变量的优化目标的一步步…
第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t.   这个优化问题的. 虽然这个优化问题只剩下了α这一个变量,但是别忘了α是一个向量,有m个αi等着我们去优化,所以还是很麻烦,所以大神提出了SMO算法来解决这个优化问题. 关于SMO最好的资料还是论文<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector…
背景:本文是在小甲鱼数据结构教学视频中的代码的基础上,添加详细注释而完成的.该段代码并不完整,仅摘录了核心算法部分,结合自己的思考,谈谈理解. Prim算法理解: 如图(摘录自小甲鱼教学视频中的图片),是一个带有权值的连通网: 根据上图可以列写出该连通网的邻接表,为了方便直观的理解:(邻接表初始化需按照权值增序排列) edges数组 begin end weight edge0 4 7 7 edge1 2 8 8 edge2 0 1 10 edge3 0 5 11 edge4 1 8 12 ed…
背景:本文是在小甲鱼数据结构教学视频中的代码的基础上,添加详细注释而完成的.该段代码并不完整,仅摘录了核心算法部分,结合自己的思考,谈谈理解. Prim算法理解: 如图(摘录自小甲鱼教学视频中的图片),是一个带有权值的连通网. 根据上图可以列写出该连通网的邻接矩阵,为了方便直观的理解: 权值 V0 V1 V2 V3 V4 V5 V0 0 6 1 5 Ꚙ Ꚙ V1 6 0 5 Ꚙ 3 Ꚙ V2 1 5 0 7 5 4 V3 5 Ꚙ 7 0 Ꚙ 2 V4 Ꚙ 3 5 Ꚙ 0 6 V5 Ꚙ Ꚙ 4 2…
今天是机器学习专题第35篇文章,我们继续SVM模型的原理,今天我们来讲解的是SMO算法. 公式回顾 在之前的文章当中我们对硬间隔以及软间隔问题都进行了分析和公式推导,我们发现软间隔和硬间隔的形式非常接近,只有少数几个参数不同.所以我们着重来看看软间隔的处理. 通过拉格朗日乘子法以及对原问题的对偶问题进行求解,我们得到了二次规划: \[\begin{align*} &\min_{\alpha}\frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha…
基本概念 支持向量机(support vector machines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机还包括核技巧,这使它成为实质上的非线性分类器.其学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问题,支持向量机的学习算法是求解凸二次规划的最优化算法. 支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机(linear s…
一直很好奇机器学习实战中的SVM优化部分的数学运算式是如何得出的,如何转化成了含有内积的运算式,今天上了一节课有了让我很深的启发,也明白了数学表达式推导的全过程. 对于一个SVM问题,优化的关键在于 KKT理论所标明的是在拉格朗日乘数法中引入的系数与上面的不等式约束条件的乘积等于0始终成立,这个条件所保证的是优化问题的解存在,对于上面的优化,从线性空间的角度来思考就是在做最大化最小间隔,是一个非常明显的二次优化问题.本身分析到这里,还不足以说明问题,为何会出现含有内积的运算式呢. 从这个拉格朗日…
//2019.08.17 #支撑向量机SVM(Support Vector Machine)1.支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的. 2.支撑向量机SVM有两种:Hard Margin SVM和Soft Margin SVM,对于第一种严格的支撑向量机算法主要解决的是线性可分的数据问题,而第二种SVM是在第一种的基础上改进而来,可以解决普遍的数据问题,对于问题的线性可…