问题起因最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真是…
from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我…
问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真…
http://www.jb51.net/article/67116.htm 本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心.Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,…
Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回. 子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID. Python的os模块封装了常见的系统调用,其中就包括for…
multiprocessing 与 threading.Thread 类似 multiprocessing.Process 创建进程, 该进程可以运行用 python 编写的函数. multiprocessing.Process.start() multiprocessing.Process.run() multiprocessing.Process.join() Process.PID 保存有 PID, 如果进程还没有 start() , 则 PID 为 None. 注意 在 UNIX 平台上…
前提: 有时候一个用一个进程处理一个列表中的每个元素(每个元素要传递到一个函数中进行处理),这个时候就要用多进程处理 1 现场案例: 我有一个[ip1,ip2,ip3,.......]这样的列表,我要每个元素ip传递给一个get_ping_info(addr)函数得到返回延迟信息,然后将结果到一保存个result列表中,如果用一个单进程执行的话可能需要几分钟,但是如果多进程处理就可以缩减几倍的速度了 用法:(程序代码只截图了部分,不可运行) 1 pool.apply_async(函数名, (函数…
1.新建单一进程 如果我们新建少量进程,可以如下: 2.使用进程池 是的,你没有看错,不是线程池.它可以让你跑满多核CPU,而且使用方法非常简单. 注意要用apply_async,如果落下async,就变成阻塞版本了. processes=4是最多并发进程数量. 3.使用Pool,并需要关注结果 更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下: 根据网友评论中的反馈,在Windows下运行有可能崩溃(开启了一大堆新窗口.进程),可以通过如下调用来解决:…
1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成多个进程,几十个尚可,若上百个甚至更多时,手动限制进程数量就显得特别繁琐,此时进程池就显得尤为重要. 进程池Pool类可以提供指定数量的进程供用户调用,当有新的请求提交至Pool中时,若进程池尚未满,就会创建一个新的进程来执行请求:若进程池中的进程数已经达到规定的最大数量,则该请求就会等待,直到进程…
1 进程概述 引自 Python 多进程 fork()详解 1.1 进程 进程是程序的一次动态执行过程,它对应了从代码加载.执行到执行完毕的一个完整过程. 进程是系统进行资源分配和调度的一个独立单位.进程是由代码(堆栈段).数据(数据段).内核状态和一组寄存器组成. 在多任务操作系统中,通过运行多个进程来并发地执行多个任务.由于每个线程都是一个能独立执行自身指令的不同控制流,因此一个包含多个线程的进程也能够实现进程内多任务的并发执行. 进程是一个内核级的实体,进程结构的所有成分都在内核空间中,一…