mapReduce的优化-combiner】的更多相关文章

mr的合成器,本质上就是reduce,在map端执行,称之为map端reduce,或者预聚合. 例子: job.setCombinerClass(WordCountCombiner.class);…
MapReduce参数优化 资源相关参数 这些参数都需要在mapred-site.xml中配置 mapreduce.map.memory.mb 一个 MapTask 可使用的资源上限(单位:MB),默认为1024 如果 MapTask 实际使用的资源量超过该值,则会被强制杀死. mapreduce.reduce.memory.mb 一个 ReduceTask 可使用的资源上限(单位:MB),默认为1024 如果 ReduceTask 实际使用的资源量超过该值,则会被强制杀死. mapred.ch…
相信每个程序员在编程时都会问自己两个问题“我如何完成这个任务”,以及“怎么能让程序运行得更快”.同样,MapReduce计算模型的多次优化也是为了更好地解答这两个问题. MapReduce计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化:二是I/O操作方面的优化.这其中,又包含六个方面的内容. 1. 任务调度 任务调度是Hadoop中非常重要的一环,这个优化又涉及两个方面的内容.计算方面:Hadoop总会优先将任务分配给空闲的机器,使所有的任务能公平地分享系统资…
0. 说明 Combiner 介绍 &&  在 MapReduce 中的应用 1. 介绍 Combiner: Map 端的 Reduce,有自己的使用场景 在相同 Key 过多的情况下,在 Map 端进行的预聚合,大大缓解了网络间的 K-V 全分发 Combiner 适用场景: 最大值 求和 最小值 Combiner 不适用平均值的计算 2. 结合 Combiner 实现 Word Count 在 [MapReduce_1] 运行 Word Count 示例程序 代码基础上在 WCApp.…
1.概念 2.参考资料 提高hadoop的mapreduce job效率笔记之二(尽量的用Combiner) :http://sishuo(k).com/forum/blogPost/list/5829.html Hadoop学习笔记—8.Combiner与自定义Combiner:http://www.tuicool.com/articles/qAzUjav Hadoop深入学习:Combiner:http://blog.csdn.net/cnbird2008/article/details/2…
MapReduce优化优化(1)资源相关参数:以下参数是在自己的 MapReduce 应用程序中配置就可以生效 mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上限(单位:MB),默认为 1024.如果 Map Task 实际使用的资源量超过该值,则会被强制杀死.mapreduce.reduce.memory.mb: 一个 Reduce Task 可使用的资源上限(单位:MB),默认为 1024.如果 Reduce Task 实际使用的资源量超过该值,则会被…
下图是演示了Combiner的好处 因为我们知道Hadoop的好处在于集群中有很多小的机器,组成了一个庞大的集群,把一个大的计算任务后者说复杂的计算过程分发到了一个个小的机器上面.但是这个集群一个致命或者是不好的就是大部分会花在磁盘IO上面,如果我们把这部分时间节省了,也就加快了MR的速度,因为Map的output始终要给Reduce做input的,这部分肯定要有磁盘的IO,如果把Maper的输出控制了,这样就加快了.combinner 就是运用了这个逻辑. 思想:合并相同的Key对应的Valu…
Shuffle过程介绍可以查看该博客:http://langyu.iteye.com/blog/992916 优化方向: 压缩:对数据进行压缩,减少写读数据量: 减少不必要的排序:并不是所有类型的Reduce需要的数据都是需要排序的,排序这个nb的过程如果不需要最好还是不要的好: 内存化:Shuffle的数据不放在磁盘而是尽量放在内存中,除非逼不得已往磁盘上放:当然了如果有性能和内存相当的第三方存储系统,那放在第三方存储系统上也是很好的:这个是个大招: 网络框架:netty的性能据说要占优了:…
Partitioner: Partitioning and Combining take place between Map and Reduce phases. It is to club the data which should go to the same reducer based on keys. The number of partitioners is equal to the number of reducers. That means a partitioner will d…
本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…