https://stackoverflow.com/a/49134587 求argmax.加newaxis.转变data类型时尽量用tf自带的函数: tf.argmax.[tf.newaxis, :].tf.cast(data, datatype=tf.float32) 保持输出为tensor,不然之后转型很麻烦的……
问题描述 在将一个数组送入tensorflow训练时,报错如下: ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray) 数组元素为数组,每个数组元素的shape不一致,示例如下: cropImg[0].shape = (13, 13, 3) cropImg[1].shape = (14, 13, 3) cropImg[2].shape = (12, 13, 3…
转自: https://blog.csdn.net/jacke121/article/details/78833922 has invalid type <class 'numpy.ndarray'>, must be a string or Tensor. (Can not convert a ndarray into a Tensor or Operation.) 原因:变量命名重复了 image_test, label_test = get_batch(x_val, y_val, w,…
本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数组 >>> import numpy as np >>> m = np.array([[1,2,3], [2,3,4]]) #定义矩阵,int64 >>> m array([[1, 2, 3], [2, 3, 4]]) >>> m = n…
解决python调用TensorFlow时出现FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecate 2019-08-13 19:51:37 涵小呆 阅读数 15679更多 分类专栏: tensorflow   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/BigDream123/arti…
1. torch.Tensor和numpy.ndarray相互转换 import torch import numpy as np # <class 'numpy.ndarray'> np_data = np.arange(6).reshape((2,3)) # <class 'torch.Tensor'> torch_data = torch.from_numpy(np_data) # <class 'numpy.ndarray'> tensor2array = to…
在学习opencv-python的时候,给出图片地址再调用cv2.imread("地址"),发现出创建的是numpy类型的ndarray对象,用来存放多维数组的对象 # 导入cv2模块 import cv2 # 给出本地图片的地址 img_dir="D:/360Downloads/test.jpg" # 创建numpy类型的ndarray对象,存放多维数组的对象 img=cv2.imread(img_dir) # <class 'numpy.ndarray'&…
NumPy 教程目录 NumPy Ndarray 对象 NumPy 最重要的一个特点是其 $N$ 维数组对象 ndarray,它是一系列同类型数据的集合,以 $0$ 下标为开始进行集合中元素的索引. ndarray 对象是用于存放同类型元素的多维数组. ndarray 中的每个元素在内存中都有相同存储大小的区域. ndarray 内部由以下内容组成: 一个指向数据(内存或内存映射文件中的一块数据)的指针. 数据类型或 dtype,描述在数组中的固定大小值的格子. 一个表示数组形状(shape)的…
问题复现 >>> a = set() >>> b = set() >>> b.add(1) >>> a.add(b) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'set' >>> c = list(b) >>…
今天用到了shape,就顺便学习一下,这个shape的作用就是要把矩阵进行行列转换,请看下面的几个例子就明白了: >>> import numpy as np >>> x = np.array([1,2,3,4]) >>> x.shape (4,) >>> y = np.zeros([2,3,4]) >>> y.shape (2, 3, 4) >>> y.shape = (3,8) >>…