https://mp.weixin.qq.com/s/el1E-61YjLkhFd6AgFUc7w…
首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降梯度:  根据下降梯度进行更新:  掌握了这个框架,你可以轻轻松松设计自己的优化算法. 一阶动量.二阶动量概念的引入,一个框架纳入所有优化算法,更清晰 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习…
在前面两篇文章中,我们用一个框架梳理了各大优化算法,并且指出了以Adam为代表的自适应学习率优化算法可能存在的问题.那么,在实践中我们应该如何选择呢? 本文介绍Adam+SGD的组合策略,以及一些比较有用的tricks. 回顾前文: Adam那么棒,为什么还对SGD念念不忘 (1) Adam那么棒,为什么还对SGD念念不忘 (2) 不同优化算法的核心差异:下降方向 从第一篇的框架中我们看到,不同优化算法最核心的区别,就是第三步所执行的下降方向: 这个式子中,前半部分是实际的学习率(也即下降步长)…
优化算法 1 GD/SGD/mini-batch GD GD:Gradient Descent,就是传统意义上的梯度下降,也叫batch GD. SGD:随机梯度下降.一次只随机选择一个样本进行训练和梯度更新. mini-batch GD:小批量梯度下降.GD训练的每次迭代一定是向着最优方向前进,但SGD和mini-batch GD不一定,可能会"震荡".把所有样本一次放进网络,占用太多内存,甚至内存容纳不下如此大的数据量,因此可以分批次训练.可见,SGD是mini-batch GD的…
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快.但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大,直接对这么大的的数据作梯度下降,可想而知速度是快不起来的.故这里将训练样本分割成较小的训练子集,子集就叫mini-batch.例如:训练样本数量m=500万,设置mini-batch=1000,则可以将训练…
Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead   参与:思源.路.泽南 快来试试 Lookahead 最优化方法啊,调参少.收敛好.速度还快,大牛用了都说好. 最优化方法一直主导着模型的学习过程,没有最优化器模型也就没了灵魂.好的最优化方法一直是 ML 社区在积极探索的,它几乎对任何机器学习任务都会有极大的帮助. 从最开始的批量梯度下降,到后来的随机梯度下降,然后到 Adam 等一大帮基于适应性学习率的方法,最优化器已经走过了很多年.尽管目前 Adam 差不多已经…
SWATS算法剖析(自动切换adam与sgd) 战歌指挥官 搬砖.码砖.代查水表.... 27 人赞同了该文章 SWATS是ICLR在2018的高分论文,提出的一种自动由Adam切换为SGD而实现更好的泛化性能的方法. 论文名为Improving Generalization Performance by Switching from Adam to SGD,下载地址为:https://arxiv.org/abs/1712.07628. 作者指出,基于历史梯度平方的滑动平均值的如adam等算法并…
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学课的期末读书报告,我选择的主题是「分析深度学习中的各个优化算法」.在此前的工作中,自己通常就是无脑「Adam 大法好」,而对算法本身的内涵不知所以然.一直希望能抽时间系统的过一遍优化算法的发展历程,直观了解各个算法的长处和短处.这次正好借着作业的机会,补一补课. 本文主要借鉴了 @Juliuszh…
之前在tensorflow上和caffe上都折腾过CNN用来做视频处理,在学习tensorflow例子的时候代码里面给的优化方案默认很多情况下都是直接用的AdamOptimizer优化算法,如下: optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost) 1 但是在使用caffe时solver里面一般都用的SGD+momentum,如下: base_lr: 0.0001 momentum: 0.9 weight_dec…
有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速度慢,一个 epoch 只能更新一次模型参数. SGD 就是用来解决这个问题的,以每个样本的梯度作为更新方向,更新次数更频繁.但有两个缺点: 更新方向不稳定.波动很大.因为单个样本有很大的随机性,单样本的梯度不能指示参数优化的大方向. 所有参数的学习率相同,这并不合理,因为有些参数不需要频繁变化,而…