tensorflow 的tf.where详解】的更多相关文章

参考Tensorflow Machine Leanrning Cookbook tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算 具体代码如下: import tensorflow as tf session_config = tf.ConfigProto( log_device_placement=True, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0,…
最近在用到数据筛选,观看代码中有tf.where()的用法,不是很常用,也不是很好理解.在这里记录一下 tf.where( condition, x=None, y=None, name=None ) Return the elements, either from x or y, depending on the condition. 理解:where嘛,就是要根据条件找到你要的东西. condition:条件,是一个boolean x:数据 y:同x维度的数据. 返回,返回符合条件的数据.当…
SSD_300_vgg和SSD_512_vgg weights下载链接[需要科学上网~]: Model Training data Testing data mAP FPS SSD-300 VGG-based VOC07+12+COCO trainval VOC07 test 0.817 - SSD-300 VGG-based VOC07+12 trainval VOC07 test 0.778 - SSD-512 VGG-based VOC07+12+COCO trainval VOC07 t…
看过前面的例子,会发现实现深度神经网络需要使用 tensorflow.nn 这个核心模块.我们通过源码来一探究竟. # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. #…
最近用tensorflow写了个OCR的程序,在实现的过程中,发现自己还是跳了不少坑,在这里做一个记录,便于以后回忆.主要的内容有lstm+ctc具体的输入输出,以及TF中的CTC和百度开源的warpCTC在具体使用中的区别. 正文 输入输出 因为我最后要最小化的目标函数就是ctc_loss,所以下面就从如何构造输入输出说起. tf.nn.ctc_loss 先从TF自带的tf.nn.ctc_loss说起,官方给的定义如下,因此我们需要做的就是将图片的label(需要OCR出的结果),图片,以及图…
from keras.layers import LSTM model = Sequential() model.add(embedding_layer) model.add(LSTM(32)) #当结果是输出多个分类的概率时,用softmax激活函数,它将为30个分类提供不同的可能性概率值 model.add(layers.Dense(len(int_category), activation='softmax')) #对于输出多个分类结果,最好的损失函数是categorical_crosse…
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 """ 大多数情况下,您将能够使用高级功能,但有时您可能想要在较低的级别工作.例如,如果您想要实现一个新特性-一些新的内容,那么TensorFlow还没有包括它的高级实现, 比如LSTM中的批处理规范化--那么您可能需要知道一些事情. 这…
Batch Normalization: 使用tf.layers高级函数来构建带有Batch Normalization的神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 在使用tf.layers高级函数来构建神经网络中我们使用了tf.layers包构建了一个不包含有Batch Normalization结构的卷积神经网络模型作为本节模型的对比 本节中将使用tf.layers包实现包含有Batch N…
Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 # Batch Normalization – Solutions # Batch Normalization 解决方案 """ 批量标准化在构建深度神经网络时最为有用.为了证明这一点,我们将创建一个具有20个卷积层的卷积神经网络,然后是一个完全连接的层.…
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了. 方法定义tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) 参数:**input : ** 输入的要做卷积的图片,要…