Bloom Filter 数据结构去重】的更多相关文章

Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合. Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive). 因此,Bloom Filter不适合那些“零错误”的应用场合.而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省. 转自: http://blog.csdn.n…
英文原始出处: Bloom filter for Scala, the fastest for JVM 本文介绍的是用Scala实现的Bloom filter. 源代码在github上.依照性能测试结果,它是JVM上的最快的Bloom filter实现.零分配(Zero-allocation)和高度优化的代码. 无内存限制,所以没有包含元素的数量限制和可控的误报率(false positive rate).扩展:可插拔的Hash算法,任意的元素类型.没错,它使用sun.misc.unsafe.…
        Url Seen用来做url去重.对于一个大的爬虫系统,它可能已经有百亿或者千亿的url,新来一个url如何能快速的判断url是否已经出现过非常关键.因为大的爬虫系统可能一秒钟就会下载几千个网页,一个网页一般能够抽取出几十个url,而每个url都需要执行去重操作,可想每秒需要执行大量的去重操作.因此Url Seen是整个爬虫系统中非常有技术含量的一个部分.         为了提高过滤的效率,我们使用有极低误判率但是效率非常高的算法--Bloom Filter,已经有高手写好了B…
https://blog.csdn.net/a1368783069/article/details/52137417 # -*- encoding: utf-8 -*- """This module implements a bloom filter probabilistic data structure and an a Scalable Bloom Filter that grows in size as your add more items to it withou…
Bloom Filter一般用于数据的去重计算,近似于HashSet的功能:但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况. 1. 基本原理 Bloom Filter能高效地表征数据集合\(S = \lbrace x_1 ,x_2 ,...,x_n \rbrace\),判断某个数据是否属于这个集合.其基本思想如下:用长度为\(m\)的位数组\(A\)来存储集合信息,同时是有\(k\)个独立的hash函数\(h_i(1\le i \l…
布隆过滤器简介:https://www.cnblogs.com/Jack47/p/bloom_filter_intro.html 布隆过滤器详解:原文链接:http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html 布隆过滤器解析:https://www.cnblogs.com/liyulong1982/p/6013002.html 布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提…
大数据处理--Bloom Filter 布隆过滤器(Bloom Filter)是由巴顿.布隆于一九七零年提出的.它实际上是一个很长的二进制向量和一系列随机映射函数. 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路.但是随着集合中元素的增加,我们需要的存储空间越来越大.同时检索速度也越来越慢. Bloom Filter 是一种空间效率很高的随机数据结构,Bloom filte…
之前的文章<更高的压缩比,更好的性能–使用ORC文件格式优化Hive>中介绍了Hive的ORC文件格式,它不但有着很高的压缩比,节省存储和计算资源之外,还通过一个内置的轻量级索引,提升查询的性能.这个内置的轻量级索引,就是下面所说的Row Group Index. 其实ORC支持的索引不止这一种,还有一种BloomFilter索引,两者结合起来,更加提升了Hive中基于ORC的查询性能. 说明一下:本文使用Hive2.0.0 + hadoop-2.3.0-cdh5.0.0作为测试环境.表lxw…
1.布隆过滤器是什么? 又快又小的处理方法 布隆过滤器(Bloom Filter):是一种空间效率极高的概率型算法和数据结构,用于判断一个元素是否在集合中(类似Hashset). 它的核心一个很长的二进制向量和一系列hash函数 数组长度以及hash函数的个数都是动态确定的. Hash函数:SHA1,SHA256,MD5.. 2.应用的经典场景 一个像Yahoo,HotMail和Gmail那样的公众电子邮件提供商, 总是需要过滤来自发送垃圾邮件的人的垃圾邮件, 一个办法就是记录下那些发送垃圾邮件…
Bloom Filter(BF) 是由Bloom在1970年提出的一种多哈希函数映射的高速查找算法,用于高速查找某个元素是否属于集合, 但不要求百分百的准确率. Bloom filter通经常使用于爬虫的url去重,即推断某个url是否已经被爬过. 原理方面我引用一篇别人的文章.讲的比較清晰了.在此我不予赘述. 很多其它信息能够參考其论文. 看过几个php实现的BF,都觉得可读性不是非常强. 本文主要给出我对Bloom Filter的一个php实现. 原理: <引用自这篇文章> 一. 实例 为…