首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
tf实现LSTM时rnn.DropoutWrapper
】的更多相关文章
tf实现LSTM时rnn.DropoutWrapper
转自:https://blog.csdn.net/abclhq2005/article/details/78683656 作者:abclhq2005 1.概念介绍 所谓dropout,就是指网络中每个单元在每次有数据流入时以一定的概率(keep prob)正常工作,否则输出0值.这是是一种有效的正则化方法,可以有效防止过拟合. 在rnn中进行dropout时,对于rnn的部分不进行dropout,也就是说从t-1时候的状态传递到t时刻进行计算时,这个中间不进行memory的dropout:仅在同…
深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse) # 构建单层的LSTM网络 参数说明:num_hidden表示隐藏层的个数,reuse表示LSTM的参数进行复用 2.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) # 表示对rnn的输出层进行dropout 参数说明:cell表示单层的lstm,o…
tensorflow教程:tf.contrib.rnn.DropoutWrapper
tf.contrib.rnn.DropoutWrapper Defined in tensorflow/python/ops/rnn_cell_impl.py. def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0, state_keep_prob=1.0, variational_recurrent=False, input_size=None, dtype=None, seed=None): Args: cell…
学习Tensorflow的LSTM的RNN例子
学习Tensorflow的LSTM的RNN例子 基于TensorFlow一次简单的RNN实现 极客学院-递归神经网络 如何使用TensorFlow构建.训练和改进循环神经网络…
深度学习原理与框架-递归神经网络-RNN_exmaple(代码) 1.rnn.BasicLSTMCell(构造基本网络) 2.tf.nn.dynamic_rnn(执行rnn网络) 3.tf.expand_dim(增加输入数据的维度) 4.tf.tile(在某个维度上按照倍数进行平铺迭代) 5.tf.squeeze(去除维度上为1的维度)
1. rnn.BasicLSTMCell(num_hidden) # 构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, self.x, tf.float32) # 执行lstm网络,获得state和outputs 参数说明:cell表示实例化的rnn网络,self.x表示输入层,tf.float32表示类型 3. tf.expand_dim(self.w, axis=0) 对数据增加一个维度 参数说明:self.w表…
LSTM比较RNN
LSTM只能避免RNN的梯度消失(gradient vanishing),但是不能对抗梯度爆炸问题(Exploding Gradient). 梯度膨胀(gradient explosion)不是个严重的问题,一般靠裁剪后的优化算法即可解决,比如gradient clipping(如果梯度的范数大于某个给定值,将梯度同比收缩).梯度剪裁的方法一般有两种: 1.一种是当梯度的某个维度绝对值大于某个上限的时候,就剪裁为上限.2.另一种是梯度的L2范数大于上限后,让梯度除以范数,避免过大.…
LSTM改善RNN梯度弥散和梯度爆炸问题
我们给定一个三个时间的RNN单元,如下: 我们假设最左端的输入 为给定值, 且神经元中没有激活函数(便于分析), 则前向过程如下: 在 时刻, 损失函数为 ,那么如果我们要训练RNN时, 实际上就是是对 求偏导, 并不断调整它们以使得 尽可能达到最小(参见反向传播算法与梯度下降算法). 那么我们得到以下公式: 将上述偏导公式与第三节中的公式比较,我们发现, 随着神经网络层数的加深对 而言并没有什么影响, 而对 会随着时间序列的拉长而产生梯度消失和梯度爆炸问题. 根据上述分析整理一下…
讨论LSTM和RNN梯度消失问题
1RNN为什么会有梯度消失问题 (1)沿时间反向方向:t-n时刻梯度=t时刻梯度* π(W*激活函数的导数) …
[Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction
Ref: http://blog.csdn.net/u014595019/article/details/52759104 Time: 2min Successfully downloaded train-images-idx3-ubyte.gz bytes. Extracting MNIST_data/train-images-idx3-ubyte.gz Successfully downloaded train-labels-idx1-ubyte.gz bytes. Extracting M…
Tensorflow实现LSTM识别MINIST
import tensorflow as tf import numpy as np from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data config=tf.ConfigProto() config.gpu_options.allow_growth=True sess=tf.Session(config=config) mnist = input_data.re…