[Luogu P1495]曹冲养猪】的更多相关文章

题目链接 中国剩余定理(孙子定理)的裸题.直接放代码. #include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define ll long long ll read(){ ll res=,f=; char ch=getchar(); '){ ; ch=getchar(); } '){ res=res*+(ch-'); ch=getchar(); } return res…
题意 题解 翻到了一个金句 就跟这句话说得一样,就是个裸题. 所以看模板呗. #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; ; long long n,x,y,a[N],b[N],m,ans; long long exgcd(long long a,long long b,…
中国剩余定理(朴素的)用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a[n] (mod m[n]) 定义ms=m[1]*m[2]*......*m[n] ,mm[i]=ms/m[i] ,inv[i]为mm[i]在模m[i]意义下的逆元. 则:x=mm[1]*inv[1]*a[1] + mm[2]*inv[2]*a[2] + ...... + mm[n]*inv[n]*a[n] 这种朴素的CRT只适用于所有的m[i]两两互质. 虽…
原题链接 https://www.luogu.org/problemnew/show/P1495 这个题明显的中国剩余定理(孙子定理),如果有不懂孙子定理的点这个链接https://baike.baidu.com/item/%E5%AD%99%E5%AD%90%E5%AE%9A%E7%90%86/2841597?fr=aladdin 如果不想看那么一大堆的字母也可以听我简单说一下(大佬勿喷): 中国剩余定理是求一次同余方程组的,比如本题的输入样例可以写成如下同余方程组: x≡1  (mod 3)…
题目描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把.举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了.如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去.你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办? 输入输出格式 输入格式: 第一行包含一个整数n (n <= 10) – 建立猪圈的次…
这是一道标准的孙子定理的题,题意浅显,思路明确 然后我就交了整整16遍啊,欺负人啊,题解暴力就能过,我就TLE ..悲惨的提交记录 下面是题面 题目描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把.举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了.如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去.你作为…
洛谷P1495:https://www.luogu.org/problemnew/show/P1495 思路 建立了a个猪圈 有b头猪没有去处 即x≡b(mod a) x即是ans 把所有的关系全部列出来 即可看出是简单的中国剩余定理模板了 代码 #include<iostream> #include<cmath> #include<cstdio> using namespace std; #define ll long long ll a[],b[],n,M=,ans…
题目描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把.举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了.如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去.你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办? 输入输出格式 输入格式: 第一行包含一个整数n (n <= 10) – 建立猪圈的次…
vijosP1164 曹冲养猪 链接:https://vijos.org/p/1164 [思路] 数学. 如果x不能满足模公式则+gcd,gcd=a的积(a互质)使加上gcd后依然满足前面的模公式. [代码] #include<iostream> using namespace std; int main() { int n; cin>>n; long long gcd,x,a,b; cin>>a>>b; x=b; gcd=a; ;i<n-;i++)…
P1164曹冲养猪 Accepted 标签:三国争霸[显示标签] 描写叙述 自从曹冲搞定了大象以后,曹操就開始捉摸让儿子干些事业,于是派他到中原养猪场养猪,但是曹冲满不高兴.于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把. 举个样例.假如有16头母猪,假设建了3个猪圈.剩下1头猪就没有地方安家了.假设建造了5个猪圈,但是仍然有1头猪没有地方去,然后假设建造了7个猪圈,还有2头没有地方去.你作为曹总的私人秘书理所当然要将准确的猪数报给曹总.你该怎么办? 格式 输入格式…
描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把.举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了.如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去.你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办? 格式 输入格式 第一行包含一个整数n (n <= 10) – 建立猪圈的次数,解下来n行…
描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把.举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了.如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去.你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办? 格式 输入格式 第一行包含一个整数n (n <= 10) – 建立猪圈的次数,解下来n行…
https://vijos.org/p/1164 描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把.举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了.如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有地方去.你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办? 格式 输入格式 第一行包含一个整数n…
https://vijos.org/p/1164 好赞orz. 对于求一组线性同余方程 x=a[i](mod m[i]) 这里任意两个m[i]和m[j]都互质 那么可以用中国剩余定理来做. 对中国剩余定理的理解:(转自matrix67神犇的blog:http://www.matrix67.com/blog/archives/5100) 最后一点可能需要一些解释.让我们来举些例子.假如有 1 路和 2 路两种公交车,其中 1 路车每 6 分钟一班,2 路车每 8 分钟一班.如果你刚刚错过两路公交车…
中国剩余定理 没啥重要的……模板题,中国剩余定理就是解出模线性方程组的一个可行解(好像也是唯一解?) 这是一种神奇的构造方法……明白了为什么这样构造是对的就行了=.=至于怎么想到这种构造方法的……去问孙子去→_→ //Vijos 1164 #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define rep(i…
复习一下 扩展中国剩余定理 首先考虑两个同余方程 \[ x \equiv a_1\; mod\; m_1\\ x \equiv a_2\; mod\; m_2 \] 化成另一个形式 \[ x = n_1 * m_1 + a_1\\ x = n_2 * m_2 + a_2 \] 联立可得 \[ n_1 * m_1 + a_1 = n_2 * m_2 + a_2\\ n_1 * m_1 - n_2 * m_2 = a_2 - a_1 \] 有解的前提是 \[ \gcd(m_1, m_2) |(a_2…
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv a_2 \pmod{m_2} \\ &... \\ x &\equiv a_n \pmod{m_n} \end{aligned} \right. \] \(m_1, m_2 , ... , m_n\)两两互质 令\(M = \prod_{i=1}^{n} m_i\),求\(x \mod M\)…
前置知识 1. a%b=d,c%b=e, 则(a+c)%b=(d+e)%b(正确性在此不加证明) 2. a%b=1,则(d\(\times\)a)%b=d%b(正确性在此不加证明) 下面先看一道题(改编自曹冲养猪): 烤绿鸟的故事 题目描述: mian包是一个贪吃的孩子,这天,他买了一堆绿鸟吃.当然他的妈妈并不想让他吃太多食物(因为那样会发胖),为了避免老妈的唠叨,他决定不告诉他的妈妈绿鸟数量,而是将绿鸟的数量x用以下式子来描述 \[\begin{cases}x≡b_1 (mod a_1)\\x…
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹果最少有几个? 够焦头烂额的(雾 大力算可知至少有16个. 我们把它抽象成数学问题: 求满足 \[\begin{cases}x\equiv1\pmod{3}\\x\equiv1\pmod{5}\\x\equiv2\pmod{7}\end{cases}\] 的最小正整数\(x\). 感性地猜到有一个长…
问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第二十六题,叫做"物不知数"问题,原文如下:   有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数.<孙子算经>中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称…
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fallen Lord(sort(a+1,a+1+n,greater<int>()); 真好用) P4161 [SCOI2009]游戏 P1707 刷题比赛 2021-10-12 CF1573A Countdown P2717 寒假作业 P7868 [COCI2015-2016#2] VUDU P1660…
--DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活动安排 #10001 「一本通 1.1 例 2」种树 #10002 「一本通 1.1 例 3」喷水装置 #10003 「一本通 1.1 例 4」加工生产调度 #10004 「一本通 1.1 例 5」智力大冲浪 #10005 「一本通 1.1 练习 1」数列极差 #10006 「一本通 1.1 练习…
关于一些逆元知识的拓展 刚艹完一道 提高- 的黄题(曹冲养猪) ,于是又来混一波讲解了 ——承接上文扫盲篇   四.Lucas定理(求大组合数取模)   题外话 这里Lucas定理的证明需要用到很多关于组合数的定理知识,  那么关于一些组合数的知识,详情你可以看这里:Binamoto' blog. 再讲讲lucas定理这个东西(扩展lucas就不讲了,因为不大会…咳咳,然后也不怎么会用到吧) 基本公式: C(n,m) ≡ C(n/p,m/p)*C(n%p,m%p) (mod p) (也就是: C…
数论知识点: 约数个数和约数和公式(例题:POJ1845 分治思想): 质因数分解 p1^k1xp2^k2xp3^k3...pn^kn 约数个数和:(1+k1)(1+k2)...(1+kn) 所有约数和=(1+p1+p1^2+...+p1^k1)...(1+pn+pn^2+...+pn^kn) 求和方法:因式分解+分治 或者等比数列求和+拓展GCD求逆元 欧拉定理:若GCD(x,y)≡1,则x^(φ(y))≡1(mode y) 特殊:费马小定理:若y是质数,且x,y互质,则x^(y-1)≡1 (…
1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己听:K是要求的数字 第一个读入的A1,Mod1不用改,从2开始做,把Mod2改成LCM,A2改成Ans,接着搞3 /* 原式: X = A[1] (%Mod[1]) X = A[2] (%Mod[2]) ... X = A[n] (%Mod[n]) K[1]*Mod[1]+A[1] = X K[2]…
$补+写题ing$ 第 1 章 快速幂 序列的第 k 个数 link $solution:$ 板子 A 的 B 次方 link $solution:$ 板子 [NOIP2013] 转圈游戏 link $solution:$ 板子 越狱 link $solution:$ 简单的容斥原理,$m^n-m\times \prod_{i=1}^{n-1} m-1$ 第 2 章 质数 Prime Distance link $solution:$ 先筛掉$[1,\sqrt{R}]$,然后在暴力即可. 质因数…
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 1.1 例 3」喷水装置 √√#10003 「一本通 1.1 例 4」加工生产调度 √√#10004 「一本通 1.1 例 5」智力大冲浪 √√#10005 「一本通 1.1 练习 1」数列极差 √√#10006 「一本通 1.1 练习 2」数列分段 √√#10007 「一本通 1.1 练习 3」线…
1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))ans=mul(ans,a);return ans;}//一行快速幂 2.快速乘 当模数较大时,直接乘会爆掉long long,需要快速乘法. 即用浮点计算倍数,做差相当于计算余数模2^63的结果,然后再模一下就好了(因为余数不超过long long) typedef long long ll; ll…
\(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: \[ \begin{equation} \left\{ \begin{array}{lr} x\equiv a_1(mod\ m_1),\\ x\equiv a_2(mod\ m_2),\\ x\equiv a_3(mod\ m_3),\\ ......\\ x\equiv a_n(mod\ m_…
中国剩余定理 别人的blog 假设现在有关于x的同余方程组(p1,p2均为质数) \(x=a_1\pmod {p_1}\) \(x=a_2\pmod {p_2}\) 可以转化成如下形式 \(x=a_1+k_1p_1\) \(x=a_2+k_2p_2\) 联立就有\(a_1+k_1p_1=a_2+k_2p_2\) 显然可以扩欧求一组特解,设为\(k_1',k_2'\) 那么全部的解可以表示成 \(k_1=k_1'+p_2t\) \(k_2=k_2'+p_1t\) 其中t为整数 回带就有\(x=a_…