bzoj5104: Fib数列】的更多相关文章

Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10^9+9 $r_1=\frac{1+\sqrt 5}{2}\\ r_2=\frac{1-\sqrt 5}{2}=-\frac{1}{r_1}\\ N=Fib_x=r_1^x-r_2^x\\ N^2=r_1^{2x}+r_2^{2x}-2(-1)^x\\ ±(r_1^x+r_2^x)=\sqrt{N^2+4…
5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(-1)n·t-1.同乘t并移项,可得t2-√5·Fn·t-(-1)n=0.讨论n的奇偶性,BSGS求二次剩余大力解方程即可.用BSGS求二次剩余是非常简单的,求出其以原根为底的离散对数即可. 注意二次剩余有正负两解,但似乎代进去正根(即√gk=gk/2)就行了,不太明白.以及题目要求最小解,BSGS的…
传送门 发现只有通项公式可以解决考虑通项公式 \(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n) = a\) 注意到根据二次互反律,在\(\mod 10^9+9\)意义下\(5\)存在二次剩余,所以先把\(\sqrt{5}\)对应的值算出来(实际上是\(383001016\)). 那么原式变为了\((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{…
快AFO了才第一次写二次剩余的题…… 显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘t,移项,得到t2-√5Nt-(-1)n=0.分别讨论n是奇数或偶数的情况,通过求根公式求t,写个二次剩余即可. #include<bits/stdc++.h> using namespace std; ,inv2=5e8+,mod=1e9+,inf=0x7fffffff; int n,w,ans…
[BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\),那么\(f[n]=\frac{1}{\sqrt 5}(A^n-B^n)\). 然后有\(A=-\frac{1}{B}\),所以有:\(f[n]=\frac{1}{\sqrt 5}((-\frac{1}{B})^n-B^n)\). 令\(x=B^n\),这里需要考虑一下\(n\)的奇偶性: 如果\…
斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+1) mod p +F(n) modp) mod p 2. 斐波那契数列的最大公约数定理:gcd(F(m),F(n))=F(gcd(m,n)) 最大公约数定理表明如果F(k)能被N整除,则F(ik)也能被N整除,这就表明了斐波那契数列所含因子的周期性,下面列举: 因子:2,3,4,5, 6,7,8,…
一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原理),从第N-1阶爬1阶到第N阶:从第N-2阶爬2阶到第N阶:从第N-3爬3阶到第N阶. 故:way(N)=way(N-1)+way(N-2)+way(N-3) 这与求Fib数列非常相似,当然,其他类似的问题也可以这样求解. 初始条件: way(1)=1 way(2)=2 way(3)=4 这里解释…
题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题,其子问题也就是Fib,这样就可以用递归来解决了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include…
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据组数. 接下来T行每行一个整数N,含义如题目所示. n≤10^15, T≤5 输出 输出共T行,每行一个整数为所求答案. 由于答案可能过大,请将答案mod 1125899839733759后输出 样例输入 2231 样例输出 3343812777493853 题解 费马小定理+矩阵乘法 傻逼题,根据…
In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibonacci number (n >= 0)! Where f(0) = f(1) = 1 and for any n > 1, f(n) = f(n - 1) + f(n - 2). For example, f(2) = 2, f(3) = 3, f(4) = 5 ... The teacher u…