本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理 最基本的机器学习算法必须是具有单个变量的线性回归算法.如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要.但是,学习基础知识总是一个好主意.这样,您将非常清楚地理解这些概念.在本文中,我将逐步解释线性回归算法.…
在本人的新书里,将通过股票案例讲述Python知识点,让大家在学习Python的同时还能掌握相关的股票知识,所谓一举两得.这里给出以线性回归算法预测股票的案例,以此讲述通过Python的sklearn库实现线性回归预测的技巧. 本文先讲以波士顿房价数据为例,讲述线性回归预测模型的搭建方式,随后将再这个基础上,讲述以线性预测模型预测股票的实现代码.本博文是从本人的新书里摘取的,新书预计今年年底前出版,敬请大家关注. 正文开始(长文预警) ------------------------------…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
Python机器学习 学习意味着通过学习或经验获得知识或技能.基于此,我们可以定义机器学习(ML)如下 - 它可以被定义为计算机科学领域,更具体地说是人工智能的应用,其为计算机系统提供了学习数据和从经验改进而无需明确编程的能力. 基本上,机器学习的主要焦点是允许计算机自动学习而无需人为干预.现在问题是如何开始和完成这种学习?它可以从数据的观察开始.数据可以是一些示例,指令或一些直接经验.然后在此输入的基础上,通过查找数据中的某些模式,机器可以做出更好的决策. 机器学习类型(ML) 机器学习算法帮…
线性回归 关注公众号"轻松学编程"了解更多. [关键词]最小二乘法,线性 一.普通线性回归 1.原理 分类的目标变量是标称型数据,而回归将会对连续型的数据做出预测. 应当怎样从一大堆数据里求出回归方程呢? 假定输人数据存放在矩阵X中,而回归系数存放在向量W中.那么对于给定的数据X1, 预测结果将会通过 Y=X*W 给出.现在的问题是,手里有一些X和对应的Y,怎样才能找到W呢? 一个常用的方法就是找出使误差最小的W.这里的误差是指预测Y值和真实Y值之间的差值,使用该误差的简单累加将使得正…
本人想边写文章,边学习,用的是 网上最火的<机器学习实战>machine learning in action 来做一次实践. 希望在过程中理顺思路之余,也有分享自己的一些理解,学习.加油. source code下载 https://www.manning.com/books/machine-learning-in-action网上也有在线阅读 机器学习实战 K-近邻算法的具体思想如下:(1)计算已知类别数据集中的点与当前点之间的距离(2)按照距离递增次序排序(3)选取与当前点距离最小的k个…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea…
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描述(Dataset Description) train.csv 该文件中是2014年每月前20天每小时的观察数据,每小时的数据是18个维度的(其中之一是PM2.5). test.csv 该文件中包含240组数据,每组数据是连续9个小时的所有观测数据(同样是18个维度). 请预测每组数据对应的第10…
原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 在了解线性回归之前,我们得先了解分类和回归问题的区别. 首先,回归问题和分类问题一样,训练数据都包含标签,这也是监督学习的特点.而不同之处在于,分类问题预测的是类别,回归问题预测的是连续值. 例如,回归问题往往解决: 股票价格预测 房价预测 洪水水位线 上面列举的问题,我们需要预测的目标都不是类别,…
本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable) 1. 线性回归算法(linear regression) 1.1 预测房屋价格 该问题属于监督学习中的回归问题,让我们来复习一下: 监督学习(Supervised'Learning'):对示例数据给出"正确答案". 回归问题(Regression 'Problem'):根据之前的数据预测出一个准确的输出值 . 1.2 训练集 m=训练样本数量 x's=输入变量/特征量 y'…