具体请参考:http://lab.fs.uni-lj.si/lasin/wp/IMIT_files/neural/nn05_narnet/ 神经网络预测时间序列数据,有三种模型, 这里是给出的是第二种NAR,即只有时间序列数据y(t),没有x(t).具体训练和预测matlab代码如下: format compact % data settings N = 249; % number of samples Nu = 224; % number of learning samples y = Dat…
上二年级的大儿子一直在喝无乳糖牛奶,最近让他尝试喝正常牛奶,看看反应如何.三天过后,儿子说,好像没反应,我可不可以说我不对乳糖敏感了. 我说,呃,这个问题不简单啊.你知道吗,这在统计学上叫推断. 儿子很好学,居然叫我解释什么叫推断.   好吧,那我就来卖弄一下.   老早之前,听机器学习的一个podcast,是总结前一年机器学习领域发生什么事情,最后一段P主说: 我们已经总结了这一年,那我们来预测(predict)一下明年吧,不过我觉得说predict不是那么准确,应该是做一下inference…
一开始对于机器学习,主要是有监督学习,我的看法是: 假定一个算法模型,然后它有一些超参数,通过喂多组数据,每次喂数据后计算一下这些超参数.最后,数据喂完了,参数取值也就得到了.这组参数取值+这个算法,就是模型文件,后续能够用来预测,也就是直接用这个算法+这个参数取值的组合,能投入实际使用,做分类/回归. 但是后来出现了inference,以及指出和learning是不同的过程.这就有点让人发晕了.learning是啥?inference是啥?learning不是inference的一种吗? 好吧…
一.detect和build 前面多节中我们花了大量笔墨介绍build方法的inference分支,这节我们看看它是如何被调用的. 在dimo.ipynb中,涉及model的操作我们简单进行一下汇总,首先创建图并载入预训练权重, 然后规范了类别序列, 实际开始检测的代码块如下, 经由model.detect方法,调用model.build方法(也就是我们前面多节在讲解的方法)构建图,实施预测. 二.detect方法 首先看看detect方法的前几行(和build一样,同见model.py), d…
100个汉字,放在data目录下.直接将下述文件和data存在同一个目录下运行即可. 关键参数: run_mode = "train" 训练模型用,修改为validation 表示验证100张图片的预测精度,修改为inference表示预测 './data/00098/102544.png'这个图片手写识别结果,返回top3. charset_size = 100 表示汉字数目.如果是全量数据,则为3755. 代码参考了:https://github.com/burness/tenso…
作者 胡启明,腾讯云专家工程师,专注 Kubernetes.降本增效等云原生领域,Crane 核心开发工程师,现负责成本优化开源项目 Crane 开源治理和弹性能力落地工作. 余宇飞,腾讯云专家工程师,专注云原生可观测性.成本优化等领域,Crane 核心开发者,现负责 Crane 资源预测.推荐落地.运营平台建设等相关工作. 田奇,腾讯高级工程师,专注分布式资源管理和调度,弹性,混部,Kubernetes Contributor,现负责 Crane 相关研发工作. 引言 业务的稳定性和成本之间的…
原文链接:https://developers.google.com/machine-learning/crash-course/descending-into-ml/ 线性回归是一种找到最适合一组点的直线或超平面的方法. 1- 线性回归 线性回归是一种找到最适合一组点的直线或超平面的方法. 以数学形式表达:$y = mx + b$ y指的是试图预测的值 m指的是直线的斜率 x指的是输入特征的值 b指的是 y 轴截距 按照机器学习的惯例来书写此方程式: $y' = b + w_1x_1$ 2-…
    条件GAN(Conditional Generative Adversarial Nets),原文地址为CGAN. Abstract     生成对抗网络(GAN)是最近提出的训练生成模型(generative model)的新方法.在本文中,我们介绍了条件GAN(下文统一简称为CGAN),简单来说我们把希望作为条件的data y同时送入generator和discriminator.我们在文中展示了在数字类别作为条件的情况下,CGAN可以生成指定的MNIST手写数字.我们同样展示了CG…
目录 C1 Introduction to Statistical Learning 1.1Statistical Learning介绍: 1.1.1 估计 \(f\) 的目的:prediction和/或inference. 1.1.2 估计 \(f\) 的方法:parametric 或 non-parametric 1.2 评估模型准确性 1.2.1 回归的评估 1.2.2 Bias-Variance的平衡 1.2.3 分类的情况 C2 Linear Regression 2.1 简单线性回归…
读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲课的方式,如果任务能分配下去就把读书会当作群员的福利开始进行,分配不下去就算了.后来我的几位好友:网神兄.戴玮博士.张巍博士.planktonli老师.常象宇博士纷纷出来支持这个读书会.待任务分配完,设置好主持人和机动队员,我认为就不需要再参与了,但进行不久,也充当机动队员讲了第二.六.九.十一章,…