LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g_i\)表示恰好的方案. 则有 \(f_n=\sum_{i=0}^nC(n,i)\cdot g_i\) 根据二项式反演则有 \(g_n=\sum_{i=0}^n(-1)^{n-i}\cdot C(n,i)\cdot f_i\) 设\(f_i\)表示至少的方案数 \(g_i\)表示恰好的方案. 则有…
题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 第一种,树形dp+LCA 比赛的时候,我猜测对于不为1的n个数,其中两两互质的对数不会很多,肯定达不到n^2 然后找出所有互质的对数,然后对为1的数进行特殊处理.(初略的估计了下,小于500的大概有50个质数,将n个数平均分到这些数中,最后大概有10000*50*200=10^7) 对所有的非1质数对,采用离…
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\dfrac 1 {(n-Sx)!} \] \(f(x)\) 钦定有\(x\)种颜色出现了恰好\(S\)的方案 然后推一下恰好有\(x\)种颜色出现了恰好\(S\)次的方案\(g(x)\) .推导在下下面. 最后的答案是\(\sum w_i g(i)\) 推导: 显然颜色种类不会超过\(L=\lfloo…
传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到这个集合的期望时间,题目所求为\(Max(S)\)很难算于是转化为求\(Min(S)\) 设\(f_u\)为点从点\(u\)开始游走第一次到达\(S\)的期望时间,那么有\[f_u=1+\sum_{(u,v\in E)}\frac{f_v}{deg_v}\] 如果\(u\in S\),那么\(f_u…
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥,这会使时间复杂度非常高,那么就考虑枚举行后\(dp\).设\(f[i]\)表示存在\(i\)列有线,任意一行无线的方案数,\(g[i[\)表示至少有\(i\)列有线,任意一行无线的方案数,那么 \[g[i]=\sum\limits_{k=i}^n C(i,k)f[i]\] 二项式反演得 \[f[0…
\[f[u][step] = \begin{cases} C[u] & step = 0 \\ (\sum{f[v][step - 1]}) - f[u][step - 2] \cdot (deg[u] - 1) & 1 \leq step < maxSteps \end{cases}\] #include <iostream> #include <cstdio> #include <cstring> #include <algorithm&…
点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) 我们首先来介绍一下什么是广义容斥. 我们要证明下面这样一个式子: \[f_n=\sum_{i=0}^nC_n^ig_i⇔g_n=\sum_{i=0}^n(-1)^{n-i}C_{n}^if_i\] 观察右边这个式子,我们将\(f_n=\sum_{i=0}^nC_n^ig_i\)代入就可以得到: \[…
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的方案数,答案模 \(1000000007\) . \((1 \le N \le 10^6, 0 \le K \le N)\) 题解 又是一道 裸的 广义容斥定理 还没这道题难qwq 广义容斥定理 (二项式反演) : \[\displaystyle b_k = \sum_{i=k}^n \binom…
P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int pre[maxn],last[maxn],other[maxn],l; void add(int x,int y) { l++; pre[l]=last[x]; last[x]=l…
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac{n!}{(s!)^k}\frac{(m-k)^{n-sk}}{(n-sk)!}\) 设\(f_k\)表示恰好有k个颜色是满足的 那么有 \(f_k=\sum_{j=k}C(j,k)(-1)^{j-k}g_j\) 前者可以直接求 后者需要卷积一下. 坑点:模数不是998244353 是1004535…