poj 3150 Cellular Automaton】的更多相关文章

Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 1227 Case Time Limit: 2000MS Description A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of dis…
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 Case Time Limit: 2000MS Description A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discret…
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. The order of t…
题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部数字之和模m.求对此环进行K次d-step(K<=10000000)后这个环的数字会变为多少. 看了一篇博客:http://www.cppblog.com/varg-vikernes/archive/2011/02/08/139804.html说的非常清楚. 拿例子来说: a矩阵: a = 1 2 2…
题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有讲,大概为: [1 1 0 .. 0 1] [1 1 1 .. .. 0] ... [1 1 .. .. .. 1]  的循环矩阵,可以证明,循环矩阵的乘积还是循环矩阵,且循环矩阵的性质: a[i][j] = a[i-1][j-1] (循环的) ,所以,我们每次矩阵相乘只需要算出第一行,余下的不需要…
题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+a2+a3) (a2+a3+a4) (a3+a4+a0) 如果用矩阵相乘来描述,那就可以表述为1xN和NxN的矩阵相乘,结果仍为1xN矩阵a…
首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+a2+a3) (a2+a3+a4) (a3+a4+a0) 如果用矩阵相乘来描述,那就可以表述为1xN和NxN的矩阵相乘,结果仍为1xN矩阵a = 1 2 2 1 2 b = 1 1 0 0 11 1 1 0 00 1 1 1 00 0 1 1 11 0 0 1 1a * b = 5 5 5 5 4所以最终…
http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 这是n^3的,可是n<=500,显然tle 我们观察这个n×n的矩阵,发现没一行都是由上一行向右移得到的. 而根据Cij=Aik×Bkj,我们可以发现,其实Bkj==Akj==Ai(j-k) 那么就可以降二维变一维,每一次只要算第一行即可,即Cj=Ak*Bj-k #includ…
UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category=489&problem=4132&mosmsg=Submission+received+with+ID+13911770" target="_blank" style="">题目链接 题意:给定一个n格的环,如今有个距离d.每次变化把环…
题面:UVA1386 Cellular Automaton 矩阵乘法+快速幂解法: 这是一个比较裸的有点复杂需要优化的矩乘快速幂,所以推荐大家先做一下下列洛谷题目练练手: (会了,差不多就是多倍经验题了) 注:如果你还不会矩阵乘法,可以移步了解一下P3390的题解 P1939 [模板]矩阵加速(数列) P3390 [模板]矩阵快速幂 P1962 斐波那契数列 P4910 帕秋莉的手环 P4838 P哥破解密码 然后讲一下本题,读题我们发现这个环上所进行的 k 次操作都是一模一样的,还是相邻的数的…
题目链接:http://poj.org/problem?id=3150 题目意思:有n个数围成一个环,现在有一种变换,将所有距离第i(1<=i<=n)个数小于等于d的数加起来,对m取余,现在要求将所有的数都变换k次,得到的n个数的值. 思路:构造一个循环矩阵,以下这个矩阵是以样例1为例的循环矩阵. 我们发现n尽然达到了500,复杂度是n^3logk,过不了,我们发现这个矩阵长得很奇葩,每一行都是上一行后移一位得到,所以我们每个矩阵可以n^2算出一行,然后通过平移得到全部的矩阵.从而把n^3的矩…
题意概述: 等价地,本题可以转化为下面的问题: 考虑$n \times n$的$0-1$矩阵$A$,在第$i$行上第$[-d+i, d+i]$(模$n$意义下)列对应的元素为$1$,其余为$0$.求$A^k$. 数据范围: $n \leq 500, k \leq 10000000, d < \frac{n}{2} $. 分析: 很容易想到矩阵快速幂$O(n^3log(k))$的解法,但是很可惜,矩阵有点大,用通用方法难免超时.尝试计算矩阵较小的幂,发现得到的矩阵的每一行 都可由上一行循环右移$1…
将这n个格子看做一个向量,每次操作都是一次线性组合,即vn+1 = Avn,所求答案为Akv0 A是一个n*n的矩阵,比如当n=5,d=1的时候: 不难发现,A是个循环矩阵,也就是将某一行所有元素统一向右移动一位便得到下一行. 而且循环矩阵相乘仍然是循环矩阵,所以只要求出Ak的第一行就行了. #include <iostream> #include <cstdio> #include <cstring> using namespace std; + ; typedef…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=15129 [思路] 矩阵乘法-循环矩阵 题目中的转移矩阵是一个循环矩阵,循环矩阵的乘积依旧是循环矩阵,这样保留矩阵第一行进行快速幂乘法即可. [代码] #include<cstdio> #include<cstring> #include<iostream> using namespace std; typedef long long LL…
矩阵快速幂. 样例是这样构造矩阵的: 矩阵很好构造,但是500*500*500*logk的复杂度显然是无法通过这题的. 其实本题构造出来的矩阵是一个循环矩阵,只需直到第一行或者第一列,即可直到整个矩阵是怎么样的. 所以,中间计算的时候,需要直到第一行是什么即可,即1*n的矩阵乘n*n的矩阵.时间复杂度o(n*n*logk) #include<cstdio> #include<cstring> #include<cmath> #include<vector>…
题意:一个细胞自动机包含 n 个格子,每个格子取值是 0 ~ m-1,给定距离,则每次操作后每个格子的值将变成到它距离不超过 d 的所有格子在操作之前的值之和取模 m 后的值,其中 i 和 j 的距离为 min{|i-1|,  n-|i-j|}.给定 n,m,d,k 和自动机每个格子的初始值,求 k 次操作后的各个格子的值. 析:由于能够直接能推出公式,而且 k 比较大,很容易想到是矩阵快速幂,并且也能够写出矩阵方程.假设 d = 1 很容易得到这个矩阵,然后使用矩阵快速幂,但是复杂度是 O(n…
给你一个一维细胞自动机,第i个格子在时刻t的状态是这样获得的,问你t时刻的状态. 把0时刻的状态视作一个列向量,发现状态转移其实是一个n*n的矩阵(以n=5为例), B C       A B C       A B C       A B C       A B 直接快速幂即可. #include<cstdio> #include<vector> using namespace std; typedef vector<int> vec; typedef vector&…
题意看不懂加题目想不通,很菜. n<=500个数围城环,每次操作对每个数Ai把与i在环上相距不超过d<n/2(包括Ai)的数加起来取模m<=1e6,求K<=1e7次操作后的环. 存在递推关系,构造矩阵吧!比如样例一很丑. 于是矩阵快速幂,n*n*n*logK,很慢. 这个矩阵比较奇怪,每一行都是上一行右移一位,而且每一行和每一列长得一样.也就是说我们只保存第一行就能知道整个矩阵长什么样. 而我们的时间主要浪费在a的相乘上,所以a只维护一行,计算答案时把a还原,更新一行的“a”时亦然…
思路: 首先 先普及一个性质: 循环矩阵*循环矩阵=循环矩阵 由于此题是距离小于d的都加上一个数. 那么 构造矩阵的时候 我们发现 诶呦 这是个循环矩阵 看看数据范围 n^2log(k)可以过. 那就把这个矩阵改一改. 因为这是个循环矩阵, 所以呢 只用保存一行就可以了. 每回做乘法的时候只做第一行的乘法. for(i) for(j) temp[i]+=a[j]*b[(i+j)%n]; 就这么着 搞搞就能过了. (好像可以用FFT? 表示并不会) // by SiriusRen #include…
有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < N),则将它重新标号为k + 1:若这个球标号为N,则将其重标号为1.(取出球后并不将其丢弃) 现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数. Input 第1行包含三个正整数N,M,K,表示了标号与球的个数以及操作次数. 第2行包含N个非负整数ai,表示初始标号为i的球有ai个. Ou…
OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 3094) 初期: 一.基本算法: 枚举. (POJ 1753,POJ 2965) 贪心(POJ 1328,POJ 2109,POJ 2586) 递归和分治法. 递推. 构造法.(POJ 3295) 模拟法.(POJ 1068,POJ 2632,POJ 1573,POJ 2993,POJ 2996) 二…
著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 3094) 初期: 一.基本算法: 枚举. (POJ 1753,POJ 2965) 贪心(POJ 1328,POJ 2109,POJ 2586) 递归和分治法. 递…
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题    //2019.3.18 POJ 2251 Dungeon Master POJ 3278 Catch That Cow  //4.8 POJ 3279 Fliptile POJ 1426 Find The Multiple  //4.8 POJ 3126 Prime Path POJ 3087 Shuffle…
[kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find The MultiplePOJ 3126 Prime PathPOJ 3087 Shuffle'm UpPOJ 3414 PotsFZU 2150 Fire GameUVA 11624 Fire!POJ 3984 迷宫问题HDU 1241 Oil Deposit…
专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find The MultiplePOJ 3126 Prime PathPOJ 3087 Shuffle'm UpPOJ 3414 PotsFZU 2150 Fire GameUVA 11624 Fire!POJ 3984 迷宫问题HDU 1241 Oil DepositsHDU 1495 非常可乐HDU 26…
According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970." Given a board with m by n cells, each cell has an initial state live (1…
According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970." Given a board with m by n cells, each cell has an initial state live (1…
n^3logn非常显然.所以要用一种因为这个矩阵是一个循环矩阵,所以只要知道第一行就可以知道所有行了. C[i][j]=C[i-1][j-1]; #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; ; int n,m,k; struct Matrix{double a[Maxn];}Ori,Bas,Ans; inl…
Cellular automata are mathematical idealizations of physical systems in which both space and time are discrete, and the physical quantities take on a nite set of discrete values. A cellular automaton consists of a lattice (or array), usually in nite,…
20世纪50年代,乌尔姆和冯·诺依曼(对此人真是崇拜的五体投地)为了研究机器人自我复制的可能性,提出了一种叫做元胞自动机(Cellular Automaton,CA)的算法.该算法采用局相互作用规则,最终产生整体的自复制构型(和蒙特卡罗法简直就是完全两种不同的哲学思想,竟然和同一个人有关).元胞自动机已经成为研究复杂系统行为的一个理论框架(蒙特卡洛法也是!!),也是人工智能的雏形(alpha GO 也用到了一种蒙特卡洛树搜索的技术!!!). 原本打算每天晚上抽出点时间研究一个分形图形的,可惜时间…