2019.10.26 CSP%您赛第三场】的更多相关文章

\(CSP\)凉心模拟^_^ --题源\(lqx.lhc\)等各位蒟蒻 题目名称 比赛 传递消息 开关灯 源文件名 \(competition.cpp\) \(message.cpp\) \(light.cpp\) 输入文件名 \(competition.in\) \(message.in\) \(light.in\) 输出文件名 \(competition.out\) \(message.out\) \(light.out\) 测试点时限 \(1s\) \(1s\) \(2s\) 内存限制 \…
我写不动前两个了. 原谅一下. __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________…
我太菜了我竟然不会分层图最短路 __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________…
题目描述 Description 精灵心目中亘古永恒的能量核心崩溃的那一刻,Bzeroth 大陆的每个精灵都明白,他们的家园已经到了最后的时刻.就在这危难关头,诸神天降神谕,传下最终兵器——潘少拉魔盒.然而当精灵们准备打开魔盒时,魔盒的守护灵出现在精灵们面前:“如果你们想要拯救世界,必须要先解决这个困难的问题:定义一个 N 阶数列 A 为神奇数列当且仅当对所有2≤i≤N−1 ,都有 Ai−1+Ai+1≥2×Ai.现在有一个N阶正整数列B ,请计算将 B 数列均匀随机打乱之后,得到的数列是神奇数列…
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不相同.\(q(q\le5\times10^5)\)次询问,每次给出\(x,y\),询问有多少数满足在本行是第\(x\)大,在本列是第\(y\)大. 思路: 对每行.每列分别排序,求出每个数是本行.本列第几大.然后即可预处理答案. 时间复杂度\(\mathcal O(n^2\log n)\). 源代码…
题目:https://ac.nowcoder.com/acm/contest/883/F 题意:求一个矩阵最大面积,这个矩阵的要求是矩阵内最小值与最大值差值<=m 思路:首先我们仔细观察范围,我们就知道可以n^3,前面这题我(看付队博客)讲过求一个最大的什么矩阵就是分两种情况, 第一种:枚举上下边界,转化为一维,复杂度n^3 第二种:枚举下边界,转化为高楼问题,复杂度n^2 这里显然复杂度可以n^3,我们就想一下三场循环,这题实际上就是找到矩阵内的最大值最小值 第一层肯定是枚举上边界 第二层我们…
得分: \(0+10+10=20\)(\(T1\)死于假题面,\(T3\)死于细节... ...) \(P.S.\)由于原题是图片,所以我没有上传题目描述,只有数据. \(T1\):颜料大乱斗(点此看题面) 由于颜色种类数很少,因此比较容易想到将颜色状压后用线段树去维护. 但是,题目中没有提及初始颜色为\(1\),害得我以为初始颜色为\(0\). 结果爆\(0\). 现将改后的代码贴出来: #include<bits/stdc++.h> #define max(x,y) ((x)>(y)…
初赛需要的知识点整理如下: (1)计算机的硬件组成与基本常识 (2)单位/进制的转换 (3)进制/逻辑运算相关 (4)概率与期望 (5)排序的各种性质 (6)简单数据结构的使用(栈.队列.链表等) (7)简单树论和图论,各种图的性质 (8)CSP竞赛相关 (9)计算机语言/软件相关 (10)时间复杂度的计算 (11)时间点/时事/荣誉奖项相关 (12)简单计数(字符串.图论等) (13)网络协议相关 (14)其它各种拼人品的题 以上选择. (1)复杂计数 (2)逻辑推理相关 (3)手模各种算法…
找规律 设\(p_i=a_{i+1}-a_i\),则答案就是\(\sum_{i=1}^{n-1}p_i\). 考虑若将\(a_i\)加上\(x\)(边界情况特殊考虑),就相当于是将\(p_{i-1}\)加\(x\),\(p_i\)减\(x\). 先考虑\(p_{i-1}\)加\(x\)所造成的影响: 当\(p_{i-1}\ge0\)时,就相当于将答案加上\(x\). 当\(-x\le p_{i-1}<0\)时,原先的答案是\(-p_{i-1}\),新的答案是\(x+p_{i-1}\),所以答案加…
预处理 考虑模数\(10\)是合数不好做,所以我们可以用一个常用套路: \(\prod_{i=l}^ra_i\equiv x(mod\ 10)\)的方案数等于\(\prod_{i=l}^ra_i\equiv x(mod\ 2)\)的方案数乘上\(\prod_{i=l}^ra_i\equiv x(mod\ 5)\)的方案数. 状态设置 考虑接下来怎么求. 既然现在模数是质数,而在模质数意义下的逆元是唯一的,除了\(0\)没有逆元,因此只要特殊考虑\(0\). 设\(f_{i,j}\)表示 将区间\…