使用GPU跑Tensorflow代码实录】的更多相关文章

使用conda创建一个新的虚拟环境 输入 conda create -n intelligent-judge python=3.6 创建一个python版本为3.6的名字是intelligent-judge的虚拟环境 查看显卡信息 输入lspci | grep -i vga查看显卡信息 很明显是NVIDIA Quadro GP100 配置CUDA和CUDNN 本来是要去下载cuda和cudnn的,结果一看,服务器上已经有现成的了 输入 cat /usr/local/cuda/version.tx…
连接服务器 Windows - XShell XFtp SSH 通过SSH来连接实验室的服务器 使用SSH连接已经不陌生了 github和OS课设都经常使用 目前使用 192.168.7.169 使用工具 XShell 和 XFtp 使用XShell连接服务器以及操作,服务器每个节点上都安装了Ubuntu 16.04 LTS操作系统 使用XFtp管理文件 参考资料: Xshell+Xftp SSH隧道代理 Xshell通过SSH密钥.SSH代理连接Linux服务器详解 Mac OS - Term…
从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大(重要的事情说三遍)的计算量,以至于CPU算不过来,需要通过GPU帮忙,但这必不意味着CPU的性能没GPU强,CPU是那种综合性的,GPU是专门用来做图像渲染的,这我们大家都知道,做图像矩阵的计算GPU更加在行,应该我们一般把深度学习程序让GPU来计算,事实也证明GPU的计算速度比CPU块,但是(但是前面的话都是废话)我们穷,买不起呀,一块1080Ti现在也要3500左右,2080Ti要9000左右,具体价格还要看显存大…
查看是否用GPU跑的TensorFlow程序 第一种方法,直接输出日志法(推荐) import tensorflow as tf sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 第二种方法,跑计算量打的程序,然后用nvidia-smi查看GPU的使用情况…
0.目的 刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜),代码地址如下: https://github.com/endernewton/tf-faster-rcnn 1. 运行环境配置 代码的README里面说明了,环境要求既有是这个git里面的,还有就是rbg的caffe代码中也有了一些环境.基本上包括: python2.7 CUDA(并行计算库)>=6.0 cud…
本文是针对谷歌Transformer模型的解读,根据我自己的理解顺序记录的. 另外,针对Kyubyong实现的tensorflow代码进行解读,代码地址https://github.com/Kyubyong/transformer 这里不会详细描述Transformer的实现机理,如果有不了解Transformer的可以先阅读文章<Attention is all you need>,以及我列出的一些参考博客,都是不错的解读. Layer Normalization 首先是Layer Norm…
查看GPU-ID CMD输入: nvidia-smi 观察到存在序号为0的GPU ID 观察到存在序号为0.1.2.3的GPU ID 在终端运行代码时指定GPU 如果电脑有多个GPU,Tensorflow默认全部使用.如果想只使用部分GPU,可以设置CUDA_VISIBLE_DEVICES 命令行输入: # 指定采用1号GPU运行*.py CUDA_VISIBLE_DEVICES=1 python *.py Environment Variable Syntax Results CUDA_VIS…
直接看代码 import tensorflow as tf # tf.Variable生成的变量,每次迭代都会变化, # 这个变量也就是我们要去计算的结果,所以说你要计算什么,你是不是就把什么定义为Variable ''' TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备. 这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器. TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称,来指定执行运算的设备.比如CPU…
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂. 我们称 其连续的定义为: 其离散的定义为: 这两个式子有一个共同的特征: 这个特征有什么意义呢? 我们令,当n变化时,只需要平移这条直线 在上面的公式中,是一个函数,也是一个函数,例如下图所示即 下图即 根据卷积公式,求即将变号为,然后翻转变成,若我们计算的卷积值, 当n=0时: 当n=1时:…
#禁用gpu版本TensorFlow,因为CUDA号码从0开始,这里直接让CUDA使用-1的GPU,自然就无法使用gpu了. 代码前面加入: import osos.environ["CUDA_VISIBLE_DEVICES"]="-1"    import tensorflow as tfEnvironment Variable Syntax    ResultsCUDA_VISIBLE_DEVICES=1    Only device 1 will be see…
原因: 使用 GPU 版 TensorFlow ,并且在显卡高占用率的情况下(比如玩游戏)训练模型,要注意在初始化 Session 的时候为其分配固定数量的显存,否则可能会在开始训练的时候直接报错退出. 解决方法: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 原先代码: wit…
pre { direction: ltr; color: rgb(0, 0, 0) } pre.western { font-family: "Liberation Mono", "Courier New", monospace } pre.cjk { font-family: "Nimbus Mono L", "Courier New", monospace } pre.ctl { font-family: "Li…
一.首先,推荐用Anaconda安装 因为Anaconda本身就已经默认安装了很多常用的Python库,可以省去大量的库安装过程,并且解决兼容性问题. Anaconda本身的安装也非常简单,搜索Anaconda官网,下载最新的Anaconda对应的exe文件,约几百兆,双击安装即可. 启动Anaconda navigator,切换到Environments选项卡,选择Open Terminal启动DOS命令窗口.如下图: 二.接着,安装GPU版Tensorflow DOS命令行输入此命令开始安装…
具体实现: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/framework 『深度长文』Tensorflow代码解析 https://zhuanlan.zhihu.com/p/25929909 tensorflow最新版本封装得更抽象了... 开源技术书:TensorFlow内核剖析 https://www.jianshu.com/p/fda4ae1e2547…
关于Haclon使用GPU加速的代码实例 read_image(Image, 'T20170902014819_58_2_1.bmp') *没有加加速并行处理 count_seconds(T1) to by rotate_image(Image, Image1, , 'constant') endfor count_seconds(T2) Time1:=(T2-T1)* stop() *以下两种加速只能选一种 *GPU加速,支持GPU加速的算子Halcon10只有56个 query_availa…
对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场(crf):是给定一组输入随机变量条件下,另一组输出随机变量的条件概率的分布模型,其特点是假设输出随机变量构成马尔科夫随机场.本文所指线性链条件随机场. 隐马尔科夫模型(HMM):描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型. 当然,作为初学者,从概念上直观感受不到两者的区别与联系,甚至…
https://www.zhihu.com/question/41667903 源码分析 http://www.cnblogs.com/yao62995/p/5773578.html 如何贡献TensorFlow代码 https://github.com/DjangoPeng/tensorflow/blob/master/CONTRIBUTING.md https://research.google.com/pubs/abadi.html…
想着开始学习tf了怎么能不用GPU,网上查了一下发现GeForce GTX确实支持GPU运算,所以就尝试部署了一下,在这里记录一下,避免大家少走弯路. 使用个人笔记本电脑thinkpadE570,内存4G,显卡GeForce GTX 950M 前期电脑已经安装win0+Ubuntu16双系统,thinkpad安装win0+Ubuntu16配置参照这里(本人为了方便) 安装顺序为: (1)安装NVIDIA Driver 安装电脑对应的显卡驱动,安装完成能够在程序中找到NVIDIA.和windows…
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的…
运行TensorFlow代码时报错 错误信息ImportError: libcublas.so.10.0: cannot open shared object file 原因:TensorFlow版本与CUDA版本不匹配 可使用pip3 install tensorflow-gpu==[version]将TensorFlow版本切换到制定版本中去,其对应的version可在'>TensorFlow官网查看 另: 1.查看cuda版本(在ubuntu下): cat /usr/local/cuda/…
Google Colab简介 Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用,但是不是永久免费暂时还不确定.Google Colab最大的好处是给广大的AI开发者提供了免费的GPU使用!GPU型号是Tesla K80!你可以在上面轻松地跑例如:Keras.Tensorflow.Pytorch等框架. 官方教程 新手指引:https://medium.com/deep-learning-turkey/google-colab-…
https://blog.csdn.net/qq_26591517/article/details/82469680 查看机器上GPU情况 命令: nvidia-smi 功能:显示机器上gpu的情况 命令: nvidia-smi -l 功能:定时更新显示机器上gpu的情况 命令:watch -n 3 nvidia-smi 功能:设定刷新时间(秒)显示GPU使用情况 其中左上侧有0.1.2.3的编号,表示GPU的编号,在后面指定GPU时需要使用这个编号. 在终端执行程序时指定GPU CUDA_VI…
http://www.leiphone.com/news/201702/n0uj58iHaNpW9RJG.html?utm_source=tuicool&utm_medium=referral 摘要 2015年11月9日,Google发布深度学习框架TensorFlow并宣布开源,并迅速得到广泛关注,在图形分类.音频处理.推荐系统和自然语言处理等场景下都被大面积推广.TensorFlow系统更新快速,官方文档教程齐全,上手快速且简单易用,支持Python和C++接口.本文依据对Tensorflo…
Tensorflow和Keras都是支持Python接口的,所以本文中说的都是搭建一个Python的深度学习环境. Keras是对Tensorflow或者Theano的再次封装,也就是以Tensorflow或Theano为后端,默认的后端是tensorflow,如果你想使用theano为后端,可以更改为theano.Keras为什么要对tensorflow和theano进行再次封装,当然是为了使用更简单!为了让我们不用关注那么多的底层细节,把所有精力都放在实际问题上面. Tesorflow与th…
由于某些原因GPU版的TensorFlow运行起来会出现一些问题,比如内存溢出等情况.此时我们可以用CPU和系统内存来运行我们的程序. 代码如下: import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = "-1"将以上三行代码放入程序首部即可.--------------------- 作者:MarT…
深度学习最热的两个框架是 pytorch 和 tensorflow,pytorch 最新版本是 1.3,tensorflow 最新版本为 2.0,在 win10 下 pytorch 1.3 要求的 cuda 最高版本是 10.1,见下图: 而 tensorflow 2.0 使用的 cuda 版本是 10.0,见下图: 这就造成了冲突,一般是装 cuda 10.1,然后再重新编译 tensorflow 2.0 源码跑在 cuda 10.1 下,编译 tensorflow 源码的步骤还是较麻烦的,也…
1.在运行之前先查看GPU的使用情况: 指令:nvidia-smi 备注:查看GPU此时的使用情况 或者 指令:watch nvidia-smi 备注:实时返回GPU使用情况 2.指定GPU训练: 方法一.在python程序中设置: 代码:os.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0’ 备注:使用 GPU 0 代码:os.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0,1’ 备注:使用 GPU 0,1 方法二.在执行python程序时候…
本人代码库: https://github.com/beathahahaha/tensorflow-DeepFM-master-original DeepFM原作者代码库: https://github.com/ChenglongChen/tensorflow-DeepFM 解析DeepFM代码 博客推荐:https://mp.weixin.qq.com/s/QrO48ZdP483TY_EnnWFhsQ 为了熟悉该代码的使用,我在example文件夹编写了一个test_1.py文件,可以直接运行…
源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Tensorflow搭建VGG19网络 3. 训练网络 参考文献 1. VGG介绍 1.1. VGG模型结构 VGG网络是牛津大学Visual Geometry Group团队研发搭建,该项目的主要目的是证明增加网络深度能够在一定程度上提高网络的精度.VGG有5种模型,A-E,其中的E模型VGG19是参加…
前提:ubuntu+tensorflow-gpu+python3.6 各种环境提前配好 1.下载工程源码 网址:https://github.com/tensorflow/models 下载时会遇到速度过慢或中间因为网络错误停止,可以换移动网络或者用迅雷下载. 2.测试环境 先添加slim路径,每次打开terminal都要加载路径 # From tensorflow/models/research/ export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim 运…