从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权异或和,那么\((x,y)\)的答案就是: \[v_x\ xor\ v_y\ xor\ v_{LCA(x,y)}\ xor\ v_{LCA(x,y)}\] 由于\(v_{LCA(x,y)}\ xor\ v_{LCA(x,y)}=0\),所以答案就是: \[v_x\ xor\ v_y\] 于是,题意就…
树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做到\(O(nm)\)的. 呃,复杂度为什么是这样的我也很迷,证明我也不会啊... 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,typenam…
卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p}^{y\ mod\ p}\] 也就是说,我们可以把\(x\)和\(y\)转化成两个\(p\)进制数,然后每一位分别求组合数后再乘起来. 所以问题来了,什么时候一个组合数的值模\(p\)为\(0\)? 由于它是质数,所以对于一个组合数\(C_a^b\),当且仅当\(a<b\)时它的值才会为\(0\)…
简单声明 我是蒟蒻不会推式子... 所以我用的是乱搞做法... 大自然的选择 这里我用的乱搞做法被闪指导赐名为"自然算法",对于这种输入信息很少的概率题一般都很适用. 比如此题,对于一组\(n,m\),我们可以进行\(10^6\)次随机,每次随机\(n\)个\(0\sim1\)之间的实数表示这个点在圆上的位置,然后我们暴力判断,用一个变量\(t\)记录下合法次数. 然后我们输出\(\frac t{10^6}\)就能得出大致概率了. 找规律 显然,上面这个"自然算法"…
分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理的时候就需要分类讨论. 分类讨论 设\(Mn_x\)在\(l\le x\le mid\)时表示左区间的后缀最小值,\(mid+1\le x\le r\)时表示右区间的前缀最小值:\(Mx_x\)同理根据\(x\)的取值范围分别表示左区间的后缀最大值和右区间的前缀最大值. 考虑在左区间枚举左端点\(i…
森林 考虑到题目中给出条件两点间至多只有一条路径. 就可以发现,这是一个森林. 而森林有一个很有用的性质. 考虑对于一棵树,点数-边数=\(1\). 因此对于一个森林,点数-边数=连通块个数. 所以,我们只要前缀和求出询问区间内的点数和边数,就可以计算出连通块个数了. 注意边数要分两个方向讨论,然后询问时注意防止越界. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<…
\(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式建出\(6\)条边. 然后就是裸的\(Tarjan\)求\(2-SAT\)一组解的板子了. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,ty…
线段树上\(DP\) 首先发现,每个数肯定是向自己的前驱或后继连边的. 则我们开一棵权值线段树,其中每一个节点记录一个\(f_{0/1,0/1}\),表示在这个区间左.右端点是否连过边的情况下,使这个区间符合条件的最小代价. 合并时考虑如果左儿子的右端点或右儿子的左端点中有一个没有连过边,就必须连边,否则就不连边. 然后我的写法比较蠢,不知道为什么当左右儿子中某个节点只有一个数时需要特判处理. 最后答案就是根节点的\(f_{1,1}\). 具体详见代码. 代码 #include<bits/std…
莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu(p)\sum_{i=l}^r[p|a_i]\] 因此我们只要枚举询问的这个数的因数,然后求出这段区间内有多少个数是它的倍数即可. 分块 我们可以统计对于每个数,每个块内有多少个数是其倍数. 数的规模\(O(n)\),块大小\(O(\sqrt n)\),所以内存是\(O(n\sqrt n)\),询问…
题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. 奇偶性讨论 这题对于\(k\)为奇数/偶数的情况,要分别处理. 由于偶数情况较为简单,所以我们从偶数讲起. 当\(k\)为偶数 这时我们发现奇数和偶数是独立的. 我们分别求出奇数和偶数的方案数(\(DP(\lfloor\frac{n+1}2\rfloor,\frac k2)\)和\(DP(\lfl…