矩阵微分与向量函数Taylor展开】的更多相关文章

参考博客:https://blog.csdn.net/a_big_pig/article/details/78994033…
关于矩阵求导,得到的导数则是矩阵形式:关于矢量求导,得到的导数则是矢量形式:关于标量求导,得到的仍是标量形式.也即关于谁求导,得到的导数形式便和谁的维度信息一致. fx = f(x) grad = np.zeros_like(x) 共存在 6 种形式的矩阵导数: 1. 关于向量的导数 标量对向量求导, ∂xTa∂x=∂aTx∂x=a 简单证明如下: ∂xTa∂x=[∂(α1x1+α2x2+⋯)∂xi]=a 2. 关于矩阵的导数 标量关于矩阵的导数: ∂aTXb∂X=[∑ijaibjxij∂xji…
link 题目大意: 你需要维护一个树 每个点都有个sin(ax+b)或exp(ax+b)或ax+b 你需要维护一些操作:连边.删边.修改某个点的初等函数.询问某条树链上所有函数带入某个值后权值和或不连通 保证x在[0,1],带入后得到的值在[0,1] 允许精度误差在1e-7 题解: 由于sin函数和exp函数不是多项式函数,比较cd,并且题目要求我们求的值比较小,我们可以对函数在0.5处求泰勒展开,然后每个点就维护了一个多项式函数 多项式函数加减后还是多项式函数,就可以通过Link-Cut T…
这是讲义里比较精华的几个题目,今晚翻看也是想到了,总结出来(处理k/n2形式). 推广式子如下: 例题如下:…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor展式 计算函数值 解释gini系数公式 平方根公式 牛顿法 梯度下降算法 拟牛顿法 DFP BFGS Taylor公式 如果函数在x0点可以计算n阶导数,则有Taylor展开 如果取x0=0,则有Taylor的麦克劳林公式. Taylor公式的应用1:函数值计算 计算\(e^{x}\) 则我们现在的…
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jacobian矩阵矩阵 对于一个向量函数F:$R_{n}$ -> $R{m}$是一个从欧式n维到欧式m维空间的函数(好像有点难理解,请看下面),这个函数由m个实函数组成,每一个函数的输入自变量是n维的向量,即$(y_{1}(x_{1},\cdots,x_{n}), \cdots,y_{m}(x_{1},…
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵.求向量函数最小值时可以使用,矩阵正定是最小值存在的充分条件.经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题,尚无一般的求解方法,但判定局部极小值的方法就是用hessian矩阵: 在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Taylor展开及其应用 常见概率分布和推导 指数族分布 共轭分布 统计量 矩估计和最大似然估计 区间估计 Jacobi矩阵 矩阵乘法 矩阵分解RQ和SVD 对称矩阵 凸优化 微积分与梯度 常数e的计算过程 常见函数的导数 分部积分法及其应用 梯度 上升/下降最快方向 凸函数 Jensen不等式 自然常数…
本渣想回过头来整理一下MATLAB的一些基本的知识(很多东西比较琐碎,应该系统的梳理梳理),下文中没有提到的,自己用help查即可. 此文用来存个档,便于回顾. 由于matlab各版本部分语法存在差异,可能会出现bug,用help查帮助文档即可. 如果没有装Matlab,我这里有一篇建模软件的博客:https://www.cnblogs.com/fangxiaoqi/p/10563509.html 变量名:字母数字串(第一个字符必须英文字母 | 字符间无空格 | 最多19个字符): 用%注解:…
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大多数现象.而且因为线性模型本质上是均值预测,而大部分事物的变化都只是围绕着均值而波动,即大数定理. 事物发展的混沌的线性过程中中存在着某种必然的联结.事物的起点,过程,高潮,衰退是一个能被推演的过程.但是其中也包含了大量的偶然性因素,很难被准确的预策,只有一个大概的近似范围.但是从另一方面来说,偶然…