LOJ P10022 埃及分数 题解】的更多相关文章

每日一题 day62 打卡 Analysis 这道题一看感觉很像搜索,但是每次枚举x∈(1,10000000)作为分母显然太蠢了. 所以我们要想办法优化代码. 优化一:迭代加深 优化二: 我们确定了搜索方式,现在就要确定搜索的上下界. 因为现在搜索的分数一定要比剩下的值小,于是有: 1/i​<x/y​ 上界满足 y<xi 设还有k个分数,因为枚举的分母是单调递增的,所以分数的值是单调递减的,可得后k个分数的值严格小于k/i,而这个值一定要比当前剩下的值大, 于是有: k/i>x/y下界满…
一.简述: 众所周知,深搜(深度优先搜索)的时间复杂度在不加任何优化的情况下是非常慢的,一般都是指数级别的时间复杂度,在题目严格的时间限制下难以通过.所以大多数搜索算法都需要优化.形象地看,搜索的优化过程就像将搜索树上没用的枝条剪下来,因此搜索的优化过程又叫剪枝.剪枝的实质就是通过判断决定是否要沿当前枝条走下去. 二.搜索的剪枝必需遵循三个原则: 1.正确性(不能把正解排除,要不然搜什么呢?)2.准确性(尽可能把不能通向正解的枝条剪去)3.高效性(因为在每个枝条上都要进行一次判断,如果判断的复杂…
IDA*:非常好用的搜索,可以解决很多深度浅,但是规模大的搜索问题. 估价函数设计思路:观察一步最多能向答案靠近多少. 埃及分数 题目大意: 给出一个分数,由分子a 和分母b 构成,现在要你分解成一系列互不相同的单位分数(形如:1/a,即分子为1),要求:分解成的单位分数数量越少越好,如果数量一样,最小的那个单位分数越大越好. 如: 19/45 = 1/3 + 1/12 + 1/180; 19/45 = 1/5 + 1/6 + 1/18; 以上两种分解方法都要3个单位分数,但下面一个的最小单位分…
题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数,String型 输出: 输出分解后的string 思路: 参考http://blog.csdn.net/hnust_xiehonghao/article/details/8682673中的贪心算法求解 设a.b为互质正整数,a<b 分数a/b 可用以下的步骤分解成若干个单位分数之和: 步骤一: 用b…
传送门 题目大意 给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b (埃及分数意思是分子为1的分数,详见百度百科) 如果有多组解,则分数数量少的优先 如果分数数量一样则分母最大的要尽量小,如果最大的分母同样大,则第二大的分母尽量小,以此类推 为了加大难度,会给出k个不能作为分母的数 (2<=a,b<=876,k<=5 并且 a,b 互质) 首先想的是数论,但是呢 推不出来... 然后发现a,b好像不大 貌似可以搜索 但是呢 不知道上界... 那就迭…
一.题目背景 http://codevs.cn/problem/1288/ 给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同. 如 19/45=1/3 + 1/12 + 1/180 二.迭代加深搜索 迭代加深搜索可以看做带深度限制的DFS. 首先设置一个搜索深度,然后进行DFS,当目前深度达到限制深度后验证当前方案的合理性,更新答案. 不断调整搜索深度,直到找到最优解. 三.埃及分数具体实现 我们用dep限制搜索层数,先从2开始,每…
题意: 输入a.b, 求a/b 可以由多少个埃及分数组成. 埃及分数是形如1/a , a是自然数的分数. 如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 + 1/3. 求出可以表达a/b个数最少埃及分数方案, 如果个数相同则选取最小的分数最大. #include <bits/stdc++.h> #define LL long long using namespace std; int maxd; ],ans[]; bool better(int d…
1288 埃及分数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数. 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的. 对于一个分数a/b,表示方法有很多种,但是哪种最好呢? 首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越 好. 如: 19/45=1/3 + 1/12 + 1/180…
JDOJ 1770: 埃及分数 https://neooj.com/oldoj/problem.php?id=1770 Description 分子均为1的分数叫做埃及分数,因为古代埃及人在进行分数运算时,只使用分子是1的分数 现在输入一个真分数,将该分数分解为埃及分数 Input 输入一行,2个数代表真分数的分子分母,用‘/’隔开 Output 输出一行表示分解成埃及分数的解 Sample Input 8/11 Sample Output 8/11 = 1/2 + 1/5 + 1/55 + 1…
#10022. 「一本通 1.3 练习 1」埃及分数 [题目描述] 在古埃及,人们使用单位分数的和(形如 $\dfrac{1}{a}​$​​ 的,$a$ 是自然数)表示一切有理数.如:$\dfrac{2}{3} = \dfrac{1}{2} + \dfrac{1}{6}​$​​,但不允许 $\dfrac{2}{3} = \dfrac{1}{3} + \dfrac{1}{3}​$,因为加数中有相同的.对于一个分数 $\dfrac{a}{b}​$​​,表示方法有很多种,但是哪种最好呢?首先,加数少的…