Bagging 和RF的区别】的更多相关文章

跑训练无聊看了看别人的面经,发现自己一时半会答不上来,整理一下. 一.Bagging介绍 先看一个Bagging的一个概念图(图来自https://www.cnblogs.com/nickchen121/p/11214797.html) 从上图可以看出,Bagging的弱学习器之间的确没有boosting那样的联系.它的特点在“随机采样”.那么什么是随机采样?随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回.也就是说,之前采集到的样本在放回…
Baggging 和Boosting都是模型融合的方法,可以将弱分类器融合之后形成一个强分类器,而且融合之后的效果会比最好的弱分类器更好. Bagging: 先介绍Bagging方法: Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中).共进行k轮抽取,得到k个训练集.(k个训练集之间是相互独立的) 每次使用一个训练集得到一个模型,k个训练…
转:http://www.cnblogs.com/liuwu265/p/4690486.html Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本). 1.Bagging (bootstrap aggregating)-自举聚类 bootstrap-引导程序 Bagging即…
去XX公司实习的时候,被问过,傻逼的我当时貌似都答错了,原谅全靠自学的我,了解甚少 RF随着树的增加不会过拟合 GBDT随着树的增加会过拟合 RF还会对特征进行random,例如特征的个数m=sqrt(原特征个数) RF的每个树都是随机选择m个样本(有放回的)和n个特征来进行构建…
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆,现在把它们放在一起,以示区别.(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉) Bootstraping: 名字来自成语“pull up by your own…
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本). 1.Bagging (bootstrap aggregating) Bagging即套袋法,其算法过程如下: A)从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,…
1.先弄清楚模型融合中的投票的概念 分为软投票和硬投票,硬投票就是几个模型预测的哪一类最多,最终模型就预测那一类,在投票相同的情况下,投票结果会按照分类器的排序选择排在第一个的分类器结果.但硬投票有个缺点就是不能预测概率.而软投票返回的结果是一组概率的加权平均数. https://blog.csdn.net/yanyanyufei96/article/details/71195063 https://blog.csdn.net/good_boyzq/article/details/5480954…
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本). 1.Bagging (bootstrap aggregating) Bagging即套袋法,其算法过程如下: A)从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,…
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法.其核心思想和基本步骤如下:(1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样.(2) 根据抽出的样本计算给定的统计量T.(3) 重复上述N次(一般大于1000),得到N个统计量T.(4) 计算上述N个统计量T的样本方差,得到统计量…
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Python实现 8 参考内容 回到顶部 1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做…