<Machine Learning - 李宏毅> 学习笔记 b站视频地址:李宏毅2019国语 第一章 机器学习介绍 Hand crafted rules Machine learning ≈ looking for a function from data Speech recognition Image recognition Playing go Dialogue system Framework define a set of function goodness of function…
<Machine Learning>系列学习笔记 第一周 第一部分 Introduction The definition of machine learning (1)older, informal definition--Arthur Samuel--"the field of study that gives computers the ability to learn without being explicitly programmed." (2)modern d…
这是Coursera上比较火的一门机器学习课程,主讲教师为Andrew Ng.在自己看神经网络的过程中也的确发现自己有基础不牢.一些基本概念没搞清楚的问题,因此想借这门课程来个查漏补缺.目前的计划是先看到神经网络结束,后面的就不一定看了. 当然,看的过程中还是要做笔记做作业的,否则看了也是走马观花.此笔记只针对我个人,因此不会把已经会了的内容复述一遍,相当于是写给自己的一份笔记吧.如果有兴趣,可以移步<Machine Learning>仔细学习. 接下来是第一周的一些我认为需要格外注意的问题.…
https://www.youtube.com/watch?v=CXgbekl66jc&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49 https://www.bilibili.com/video/av65521101 因为之前有些基础,对于本视频课程的学习仅仅记录一些要点.目前只学习涉及深度学习和对抗攻击的部分. 1 Regression 通过Gradient Descent找到Loss Function的局部最优点.Gradient就是Loss Functio…
Attack ML Models - 李宏毅 https://www.bilibili.com/video/av47022853 Training的Loss:固定x,修改θ,使y0接近ytrue. Non-targeted Attack的Loss:固定θ,修改x,使y‘远离ytrue. Targeted Attack的Loss:固定θ,修改x,使y‘远离ytrue且接近yfalse. constraint:x‘和原图像x0的相似度,必须小于阈值ε.有多种计算方法,如L2-norm,L-infin…
课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computational biology.搜索引擎Google/Bing. 自动直升机autonomous helicopter.自然语言处理Natural Language Processing 2.ML的定义 3.目前ML的分类 监督学习Supervised Learning.无监督学习Unsupervised…
第二周 第一部分 Multivariate Linear Regression Multiple Features Note: [7:25 - θT is a 1 by (n+1) matrix and not an (n+1) by 1 matrix] Linear regression with multiple variables is also known as "multivariate linear regression". We now introduce notatio…
一.改进模型的几个方法 Collect more data Collect more diverse training set Train algorithm longer with gradient descent Try Adam instead of gradient descent Try bigger network Try dropout Add \(L_2\) regularization Network architecture Activation functions hidd…
第四周 Model Representation I 让我们来看看如何使用神经网络来表示假设函数.在非常简单的水平上,神经元基本上是将输入(树突)作为输入到输出(轴突)的电输入(称为"尖峰")的计算单元.在我们的模型中,我们的树突像输入特征x1 ... xn,输出是我们的假设函数的结果.在这个模型中,我们的x0输入节点有时被称为"偏置单元".它总是等于1.在神经网络中,我们使用与分类11 + e-θTx相同的逻辑函数,但我们有时称之为S形(逻辑)激活函数.在这种情况…
第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0.5的预测作为0.然而,此方法不能很好地工作,因为分类实际上不是线性函数. 分类问题就像回归问题,只是我们现在想要预测的值y只包含少量的离散值.现在,我们将关注二进制分类问题,其中y只能取两个值0和1.(我们在这里说的大多数也将泛化到多类情况.)例如,如果我们尝试为电子邮件构建垃圾邮件分类器,则x(i…