Pandas | 07 函数应用】的更多相关文章

要将自定义或其他库的函数应用于Pandas对象,有三个重要的方法,下面来讨论如何使用这些方法.使用适当的方法取决于函数应用于哪个层面(DataFrame,行或列或元素). 表合理函数应用:pipe() 行或列函数应用:apply() 元素函数应用:applymap() 一.对整个DataFrame执行操作 可以通过将函数和适当数量的参数作为管道参数来执行自定义操作 import pandas as pd import numpy as np # adder函数将两个数值作为参数相加并返回总和 d…
1.Pandas的函数应用 1.apply 和 applymap 1. 可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random.randn(5,4) - 1) print(df) print(np.abs(df)) 运行结果: 0 1 2 3 0 -0.062413 0.844813 -1.853721 -1.980717 1 -0.539628 -1.975173 -0.856597 -2.612406 2 -1.277…
shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会变成如下: index value1 A NaN B 0 C 1 D 2 看一下函数原型: DataFrame.shift(periods=1, freq=None, axis=0) 参数: periods:类型为int,表示移动的幅度,可以是正数,也可以是负数,默认值是1,1就表示移动一次,注意这…
diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行: df.diff() 则会得到: index value1 A NaN B 1 C 1 D 1 怎么得到的呢,其实是经过了两个步骤,首先会执行: df.shift() 然后再将该数据与原数据做差,即: df.shift()-df 函数原型: DataFrame.diff(periods=1, ax…
pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame import pandas as pd import numpy as np 带.的为Series或者DataFrame对象的方法,只列举了部分关键字参数. 1.基础 .values 获取值,返回array对象 .index 获取(行)索引,返回索引对象 Series( index=) 创建Series…
Python web前端 07 函数及作用域 一.函数 1.有名函数和匿名函数 #函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块 #函数就是包裹在花括号里面的代码块,前面使用了关键字function #分为有名函数和匿名函数 #有名函数:有名字的函数,函数名加括号执行/充当事件函数执行 #匿名函数:没有名字的函数,匿名函数不能单独出现,一般充当事件函数 oBox.onclinck=function(){..}; oBox.onclinck=fn;#这两个是一样的,后面的函数就是fn…
 pandas字符串函数详解(转)——原文连接见文章末尾 在使用pandas框架的DataFrame的过程中,如果需要处理一些字符串的特性,例如判断某列是否包含一些关键字,某列的字符长度是否小于3等等这种需求,如果掌握str列内置的方法,处理起来会方便很多. 下面我们来详细了解一下,Series类的str自带的方法有哪些. 1.cat() 拼接字符串        例子:        >>> Series(['a', 'b', 'c']).str.cat(['A', 'B', 'C']…
原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 二.文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', '…
一.Pandas Python Data Analysis Library或Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. 二.Series Series是一维数组,与Numpy中的一维array类似.二者与Python基本的数据结构List也很相近,其区别是List中的元素可以是不同的数据类型,而Array和Serie…
1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列column_name的数据 4. pd.unique(Series)获取Series中元素的唯一值(即去掉重复的) 注意和nunique的区别,nunique只作用于Series,用法是Series.nunique() 可以看得出,nuinque()是查看该序列(axis=0/1对应着列或行)的不同…