spark 机器学习 随机森林 原理(一)】的更多相关文章

1.什么是随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决 策树之间是没有关联的.在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一 类被选择最多,就预测这个样本为那一类. 我们可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们 从M个特征中选择m个让每一棵决策树进行行学习),这样在随机森林中就有了了很多个精通不不同领 域的专家…
通过天气,温度,风速3个特征,建立随机森林,判断特征的优先级结果 天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷)风速(0没风,1微风,2大风)1 1:0 2:1 3:0结果去打球 1字段:晴天 2字段:温度舒适 3字段:风速没风[hadoop@h201 pp]$ cat pp1.txt 1 1:0 2:1 3:00 1:2 2:2 3:21 1:0 2:0 3:01 1:0 2:0 3:11 1:0 2:1 3:11 1:0 2:1 3:11 1:0…
使用基于Apache Spark的随机森林方法预测贷款风险   原文:Predicting Loan Credit Risk using Apache Spark Machine Learning Random Forests 作者:Carol McDonald,MapR解决方案架构师 翻译:KK4SBB 责编:周建丁(zhoujd@csdn.NET) 在本文中,我将向大家介绍如何使用Apache Spark的Spark.ml库中的随机森林算法来对银行信用贷款的风险做分类预测.Spark的spa…
此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错的选择. Spark是目前比较流行的分布式计算解决方案,同时支持集群模式和本地单机模式.由于其通过scala语言开发,原生支持scala,同时由于python在科学计算等领域的广泛应用,Spark也提供了python的接口. Spark的常用操作详见官方文档: http://spark.apache…
1.随机森林模型 clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=4) rf_clf = clf.fit(x, y.ravel()) RandomForestClassifier函数的参数含义详解: max_features:随机森林允许单个决策树使用特征的最大数量. Python为最大特征数提供了多个可选项. 下面是其中的几个: Auto/None :简单地选取所有特征,每颗树都可以利用…
目录 随机森林原理 随机森林代码(Spark Python) 随机森林原理 参考:http://www.cnblogs.com/itmorn/p/8269334.html 返回目录 随机森林代码(Spark Python) 代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1 # -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext sc = SparkContext('local'…
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
前言 最近阅读了spark mllib(版本:spark 1.3)中Random Forest的实现,发现在分布式的数据结构上实现迭代算法时,有些地方与单机环境不一样.单机上一些直观的操作(递归),在分布式数据上,必须进行优化,否则I/O(网络,磁盘)会消耗大量时间.本文整理spark随机森林实现中的相关技巧,方便后面回顾.   随机森林算法概要 随机森林算法的详细实现和细节,可以参考论文Breiman 2001.这里简单说说大体思路,方便理解代码. 随机森林是一个组装(ensemble mod…
1.什么是随机采样? Bagging可以简单的理解为:放回抽样,多数表决(分类)或简单平均(回归): Bagging的弱学习器之间没有boosting那样的联系,不存在强依赖关系,基学习器之间属于并列生成.它的特点在“随机采样”. 随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回.也就是说,之前采集到的样本在放回后有可能继续被采集到.对于我们的Bagging算法,一般会随机采集和训练集样本数m一样个数的样本.这样得到的采样集和训练集样本的个…
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结. 随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力. 1.Bagging的原理 在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图 从…
分类算法:对目标值进行分类的算法    1.sklearn转换器(特征工程)和预估器(机器学习)    2.KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据    3.模型选择与调优    4.朴素贝叶斯算法(假定特征互独立 + 贝叶斯公式(概率计算) + 拉普拉斯平滑系数),假定独立,对缺失数据不敏感,用于文本分类    5.决策树(找到最高效的决策顺序--信息增益(关键特征=信息熵-条件熵) + 可以可视化)    6.随机森林(bootstarp(又放回…
1.随机森林原理介绍 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标.简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.在训练每棵树的节点时,使用的特征是从所有特征中按照一定比…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 相信看…
2.OpenCV函数使用 OpenCV提供了随机森林的相关类和函数.具体使用方法如下: (1)首先利用CvRTParams定义自己的参数,其格式如下 CvRTParams::CvRTParams(int max_depth, int min_sample_count, float regression_accuracy, bool use_surrogates, int max_categories, const float* priors, bool calc_var_importance,…
文章目录 1. 前言 2. 随机森林原理 3.实现原理 3.1并行化训练 3.1.1训练函数 3.1.2 单进程训练函数 生成数据集模块--生成部分数据集 单进程训练函数代码 3.2 并行化预测 3.2.1 预测函数 3.2.2 单进程预测函数 4. 并行化结果分析 5. 源码 参考资料 1. 前言 Python其实已经实现过随机森林, 而且有并行化的参数n_jobs 来设置可以使用多个可用的cpu核并行计算. n_jobs : int or None, optional (default=No…
本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随机森林概念及相互关系 2.随机森林参数解释及设置建议 3.随机森林模型调参实战 4.随机森林模型优缺点总结 集成学习.Bagging和随机森林 集成学习 集成学习并不是一个单独的机器学习算法,它通过将多个基学习器(弱学习器)进行结合,最终获得一个强学习器.这里的弱学习器应该具有一定的准确性,并且要有…
概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Toby,项目合作QQ:231469242 随机森林就是由多个决策树组合而成的投票机制. 理解随机森林,要先了解决策树 随机森林是一个集成机器学习算法…
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision Tree) 2.4 LightGBM提升学习模型 1.基本知识点介绍 RandomForest.XGBoost.GBDT和LightGBM都属于集成学习. 集成学习通过构建并结合多个分类器来完成学习任务,也称为多分类系统,集成学习的目的是通过结合多个机器学习分类器的预测结果来改善基本学习器的泛化能力和…
概述 随机森林是决策树的组合算法,基础是决策树,关于决策树和Spark2.0中的代码设计可以参考本人另外一篇博客: http://www.cnblogs.com/itboys/p/8312894.html随机森林Spark中基于Pipeline和DataFrame的代码编写和决策树基本上是一样的,只需要将classifer换一下可以了,其它部分是一模一样的,因此本文不再对代码进行注释分析. 随机森林模型可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获得第一组基准测试结果.…
随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数据,列方向上采用无放回随机抽样得到特征子集,并据此得到其最优切分点,这便是随机森林算法的基本原理.图 3 给出了随机森林算法分类原理,从图中可以看到,随机森林是一个组合模型,内部仍然是基于决策树,同单一的决策树分类不同的是,随机森林通过多个决策树投票结果进行分类,算法不容易出现过度拟合问题. 图 3…
随机森林算法是机器学习.计算机视觉等领域内应用较为广泛的一个算法.它不仅可以用来做分类(包括二分类和多分类),也可用来做回归预测,也可以作为一种数据降维的手段. 在随机森林中,将生成很多的决策树,并不像在决策树那样只生成唯一的树.随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,每个树都是一个独立的判断分支,互相之间彼此独立.随机森林在运算量没有显著提高的前提下提高了预测精度,并且对多元公线性不敏感,判断结果缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量…
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现KNN 100天搞定机器学习|Day13-14 SVM的实现 100天搞定机器学习|Day15 朴素贝叶斯 100天搞定机器学习|D…
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林的基本原理 训练算法 包外误差 计算变量的重要性 实验环节 实际应用 随机森林是一种集成学习的算法,构建在bootstrap采样基础之上的,bagging算法基于boostrap采样,与之对应的是boosting算法.随机森林是多颗决策树的集成,由于采用了bootstrip采样,在训练时有一部分样本…
集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能.这对“弱学习器”尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的,而基学习器有时也被直接称为弱学习器.虽然从理论上来说使用弱学习器集成足以获得好的性能,但在实践中出于种种考虑,例如希望使用较少的个体学习器,或是重用关于常见学习器的一些经验等,人们往往会使用比较强的学习器.当然,还得看实践的结果,有时也不一定集成相对强的学习器效果就会有多好. bagging的策略 1)bootstrap aggregation 2…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝…