首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
UOJ449. 【集训队作业2018】喂鸽子 [概率期望,min-max容斥,生成函数]
】的更多相关文章
UOJ449. 【集训队作业2018】喂鸽子 [概率期望,min-max容斥,生成函数]
UOJ 思路 由于最近养成的不写代码的习惯(其实就是懒),以下式子不保证正确性. 上来我们先甩一个min-max容斥.由于每只鸽子是一样的,这只贡献了\(O(n)\)的复杂度. 现在的问题转化为对于\(n\)只鸽子里面的\(c\)只鸽子,求喂饱其中一只鸽子的期望时间. 我们对期望的式子差分一下,变成统计经过\(i\)秒之后\(c\)只鸽子仍然一只都没有被喂饱的概率. 枚举这\(i\)秒里面有\(s\)秒喂到了,设\(f_{c,s}\)表示给\(c\)只鸽子喂了\(s\)粒玉米,一只都没有饱的概率…
UOJ422. 【集训队作业2018】小Z的礼物 [min-max容斥,插头DP]
UOJ 思路 由于没有代码和AC记录的支撑,以下思路可能有错. 看到全部取完,大概可以想到min-max容斥. 由于期望的表达式里面合法方案的个数是在分母里面的,所以可以想到把它记录在状态里. 然而由于我菜,一开始只想到逐列DP,于是复杂度炸了-- 考虑插头DP:设\(f_{i,j,S,k}\)表示当前做到\((i,j)\),轮廓线上的状态是\(S\),已经有\(k\)个取到礼物的方案,带容斥系数的方案数. 转移想必乱搞就行了? 代码 咕咕咕…
LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】
题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s中任意一个点的最大步数 然后就可以的得到 \(f_{s}=\sum_{t\subseteq s}(-1)^{|t|+1}g_t\) 然后考虑g怎么求 设\(p_i\)是i点到任意一个子集中的点的最小步数 有\(p_u=\frac{1}{du_u}(1+p_{fa_u})+\frac{1}{du_u}…
UOJ#422. 【集训队作业2018】小Z的礼物
#422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途统计答案会很麻烦 所以把x记录到状态里! 轮廓线DP f[i][j][s][x]到了(i,j),轮廓线选择情况是s,x个选择可以染色的所有方案的(-1)^(|T|+1)的和 枚举(i,j)选不选,x的增长直接用s和(i,j)位置计算即可. 相当于每个T在x的位置上被考虑了恰好一次. #include…
UOJ #449. 【集训队作业2018】喂鸽子
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥k\). 小Z想要你告诉他,期望多少秒之后所有的鸽子都饱了. 假设答案的最简分数形式为\(\frac{a}{b}\),你需要求出\(w\),满足\(a≡b⋅w \pmod{998244353}(0≤w<998244353).\) \(n\leq 50,k\leq 1000\) Orz 首先可以用\(…
[UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq S}^{ }(-1)^{|T|-1}E(min(T))$ 那么只需要知道每个子集中最早得到的物品的期望时间即可得出答案. 对于每个子集,最早得到的物品的期望时间就是一次选择能得到这个子集中元素的概率的倒数. 用一次选择能得到这个子集中的元素的方案数除上总方案数(每次共有$2*n*m-n-m$种选择方…
【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥. 要求的就是\(max(All)\),而每个集合的\(min\)是很好求的. 如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\). 仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集…
2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物
T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) 考虑\(min-max容斥\).\(max\{S\}=\sum_{S \subset T}(-1) ^{|T|-1}min\{T\}\) 此时我们要求的变为了\(min\{T\}\),即\(T\)中至少有一个元素被选择的期望. 我们知道当\(T\)中元素被选择的概率为\(P\)时,其期望为\(\f…
【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)
[UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). \(d=2\)的时候,可以做一个\(dp\),设\(f[i][j]\)表示前\(i\)个复读机选了\(j\)个时间的方案数. 然后枚举当前这个复读机复读的次数,得到: \[f[x][j]=\sum_{i=0}^{j}[2|i]{n-j+i\choose i}f[x-1][j-i]\] 化简啥的之后…
UOJ#418. 【集训队作业2018】三角形
#418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2=(a1+a2,max(b1,a1+b2)) 放置顺序考虑贪心 比较: A放在B前面(和父亲进行合并)当且仅当(C=A+B).b<(D=B+A).b 分A.a和B.a的正负进行讨论 初始的pair:(w[x]-∑w[son[x]],w[x])把儿子会都扔掉 初始的pair放进堆里,取n-1次,和父亲合…