box-cox解读】的更多相关文章

In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutions; Jags, STAN, MCMCpack and LaplacesDemon. To quote the SAS manual: 'The data are taken from Crowder (1978). The Seeds data set is a 2 x 2 factorial…
房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard 通过Serigne的这篇notebook,我学习到了关于数据分析.特征工程.集成学习等等很多有用的知识,在这里感谢一下这位大佬. 本篇文章立足于Serigne的教程,将他的大部分代码实现了一遍,修正了个别小错误,也加入了自己的一些视角和思考,做了一些自认为reasonable的"改进…
整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-label转化 box-cox转换 one-hot categoy 特征 数据相关性 模型部门 基模型 模型初步评估 stacking models 增加metal模型 ensemble StackedRegressor model with XGBoost and LightGBM 整合几部分代码的…
1:SSD更具体的框架如下: 2: Prior Box 缩进在SSD中引入了Prior Box,实际上与anchor非常类似,就是一些目标的预选框,后续通过softmax分类+bounding box regression获得真实目标的位置.SSD按照如下规则生成prior box: 以feature map上每个点的中点为中心(offset=0.5),生成一些列同心的prior box(然后中心点的坐标会乘以step,相当于从feature map位置映射回原图位置) 正方形prior box…
说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好坏也直接影响着其他相关函数的性能,最典型莫如现在很好的EPF滤波器:GuideFilter.因此其优化的档次和程度是非常重要的,网络上有很多相关的代码和博客对该算法进行讲解和优化,提出了不少O(1)算法,但所谓的0(1)算法也有优劣之分,0(1)只是表示执行时间和某个参数无关,但本身的耗时还是有区别…
时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码.但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了.对于里面所描述的神奇的效果,大家都跃跃欲试,也有人将其复现了.我这里也花了一天的时间去复现了单尺度的C++版本,主要是基于Op…
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object Detection进展缓慢,在DPM之后没有大的进展,直到CVPR2014,RBG大神(Ross Girshick)把当时爆火的CNN结合到Detection中,将PASCAL VOC上的准确率提高到53.7%,本文为你解读RBG的CVPR2014 paper: Rich feature hierar…
DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络).是2014年Ian J.Goodfellow 的那篇开创性的GAN论文之后一个新的提出将GAN和卷积网络结合起来,以解决GAN训练不稳定的问题的一篇paper. 关于基本的GAN的原理,可以参考原始paper,或者其他一些有用的文章和代码,比如:GAN mnist 数据生成,深度卷积GAN之图像生成,GAN tutorial等.这里不再赘述. 一. DCGA…
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR2019的paper,来自华科和地平线,文章提出了Mask Scoring R-CNN的框架是对Mask R-CNN的改进,简单地来说就是给Mask R-CNN添加一个新的分支来给mask打分从而预测出更准确的分数. 源码地址:https://github.com/zjhuang22/masksco…
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由: 这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进. 研究动机: 目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Fa…
首先先放下github地址:https://github.com/acm5656/ssd_pytorch 然后放上参考的代码的github地址:https://github.com/amdegroot/ssd.pytorch 为什么要使用pytorch复现呢,因为好多大佬的代码对于萌新真的不友好,看半天看不懂,所以笔者本着学习和练手的目的,尝试复现下,并分享出来帮助其他萌新学习,大佬有兴趣看了后可以提些建议~ 然后对ssd原理感兴趣的同学可以参考我的这篇博客https://www.cnblogs…
https://pjreddie.com/darknet/yolo/ 具体安装及使用可以参考官方文档https://github.com/pjreddie/darknet https://blog.csdn.net/app_12062011/article/details/77554288#comments     q强烈推荐阅读,系统学习深度学习(三十二)--YOLO v1,v2,v3 并且还有很多其他比较好的文章http://blog.csdn.net/u012235274/article/…
如何解读IL代码 关于IL代码,我有将从三个方面去揭开它神秘的面纱.IL代码是什么?我们为什么要去读懂IL代码?我们如何去读懂IL代码?这三个问题的解答,将是我解读IL代码的整体思路. IL代码是什么?IL(Intermediate Language),它也称为CIL或者MSIL,翻译成中文就是“中间语言”.C#的JIT编译器可以将C#源程序编译为.exe或.dll文件,但此时编译出来的程序代码并不是CPU能直接执行的二进制代码,而是传说中的IL代码.因此,.exe或者.dll文件都可以被VS安…
转自:http://blog.csdn.net/elaine_bao/article/details/53046542 版权声明:本文为博主原创文章,转载请注明.   目录(?)[-] 综述 代码解读 step by step 1 预处理阶段 11 载入训练集测试集 12 图片上采样 13 镜像图片 2 训练阶段 21 定义scanner用于扫描图片并提取特征 22 设置scanner扫描窗口大小 23 定义trainer用于训练人脸检测器 24 训练生成人脸检测器 25 测试 3 tips 3…
前言:URDF文件标签解读.margin: auto; width: 700px; height: 100px; ; width: 700px; text-align: center; 一.连杆(link)标签 标签 功能 <link> 连杆的可视化.碰撞和惯性信息设置 <collision> 设置连杆的碰撞计算的信息 <visual> 设置连杆的可视化信息 <inertial> 设置连杆的惯性信息 <mass> 连杆重量(单位:kg)的设置 &…
首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 188 人赞同了该文章 前言 anchor-free目标检测属于anchor-free系列的目标检测,相比于CornerNet做出了改进,使得检测速度和精度相比于one-stage和two-stage的框架都有不小的提高,尤其是与YOLOv3作比较,在相同速度的条件下,CenterNet的精度比Y…
可以额外参考资料:https://blog.csdn.net/sinat_26917383/article/details/77864582,http://www.dataguru.cn/article-12380-1.html 由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布. Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性.独立性.方差齐性以及正态性的同时,又不丢失信息. Box-Cox变换是统计建模中常用…
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注.   上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人…
文章链接:https://arxiv.org/pdf/1509.06451.pdf 1.关于人脸检测的一些小小总结(Face Detection by Literature) (1)Multi-view Face Detection Using Deep Convolutional Neural Network Train face classifier with face (> 0.5 overlap) and background (<0.5 overlap) images. Comput…
SPSS详细操作:生存资料的Cox回归分析 一.问题与数据 某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年.研究以死亡为结局,两种治疗方式为主要研究因素,同时考虑调整年龄和性别的影响,比较两种疗法对肺癌患者生存的影响是否有差异.变量的赋值和部分原始数据见表1和表2. 表1.  肺癌患者生存的影响因素与赋值 表2. 两组患者的生存情况 二.对数据结构的分析 该研究以死亡为结局,治疗方式为主要研究因素,每个研究…
参考博客:::https://www.cnblogs.com/Dzhen/p/6845852.html 非常全面的解读参考:::https://blog.csdn.net/DaVinciL/article/details/81812454 下面我和大家一起从训练最开始学习作者如何将原始数据读入并通过RoIDataLayer转化成网络训练所需的数据的总体过程. 训练从./tools/train_net.py开始,进入主函数,我们只关注跟数据有关的模块. 首先是imdb, roidb = combi…
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原作者Missouter,博客园链接https://www.cnblogs.com/missouter/,欢迎交流. [Abstract] 该论文提出了一种结合图像中语义.几何学与稀疏.稠密信息的3D目标检测算法. 该算法用Faster R-CNN接收作为立体输入的左右图像,同时检测.联系两幅图像中的…
CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 论文链接地址:https://arxiv.org/pdf/1812.02781.pdf 摘要内容: 本文提供了基于端到端单目3D目标检测和度量形状检索的深度学习方法.为了在3D中提升2D检测,定位,以及缩放,提出了一种新的loss函数.不同于各自独立的优化这些数量,3D示例允许适当的度量box…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
第一印象 Rank & Sort Loss for Object Detection and Instance Segmentation 这篇文章算是我读的 detection 文章里面比较难理解的,原因可能在于:创新的点跟普通的也不太一样:文章里面比较多公式.但之前也有跟这方面的工作如 AP Loss.aLRPLoss 等.它们都是为了解决一个问题:单阶段目标检测器分类和回归在训练和预测不一致的问题.那么 Rank & Sort Loss 又在以上的工作进行了什么改进呢?又解决了什么问题…
前言 这是github上的一个项目YOLO_v3_tutorial_from_scratch,它还有相应的blog对其详细的解读.机器之心翻译了他的tutorial:从零开始PyTorch项目:YOLO v3目标检测实现.教程中的内容就不再赘述,写这篇博客的目的在于记录自己在学习这篇教程时的笔记. 本教程包含五个部分: YOLO 的工作原理 创建 YOLO 网络层级 实现网络的前向传播 objectness 置信度阈值和非极大值抑制 设计输入和输出管道 1. YOLO 的工作原理 略 2. 创建…
目录 简介 LimitedBox SizedBox FittedBox 总结 简介 flutter中的layout有很多,基本上看layout的名字就知道这个layout到底是做什么用的.比如说这些layout中的Box,从名字就知道这是一个box的布局,不过flutter中的box还有很多种,今天我们来介绍最常用的LimitedBox,SizedBox和FittedBox. LimitedBox LimitedBox是一种限制大小的Box,先来看下LimitedBox的定义: class Li…
之前很多次安装CentOS7虚拟机,每次配置网络在网上找教程,今天总结一下,全图文配置,方便以后查看. Virtual Box可选的网络接入方式包括: NAT 网络地址转换模式(NAT,Network Address Translation) Bridged Adapter 桥接模式 Internal 内部网络模式 Host-only Adapter 主机模式 具体的区别网上的资料很多,就不再描述了,下面是一个最直接有效的配置,配置CentOS7虚拟机里面能上外网,而主机与CentOS7虚拟机也…
第七篇 前言 本篇文章主要讲解下载操作的相关知识,SDWebImageDownloaderOperation的主要任务是把一张图片从服务器下载到内存中.下载数据并不难,如何对下载这一系列的任务进行设计,就很难了.接下来我们一步一步的分析作者在开发中的思路和使用到的技术细节. NSOperation NSOperation想必大家都知道,为了让程序执行的更快,我们用多线程异步的方式解决这个问题,GCD与NSOperation都能实现多线程,我们这里只介绍NSOperation.如果大家想了解更多N…
第一篇 前言 从今天开始,我将开启一段源码解读的旅途了.在这里先暂时不透露具体解读的源码到底是哪些?因为也可能随着解读的进行会更改计划.但能够肯定的是,这一系列之中肯定会有Swift版本的代码. 说说我的目的.想成为一名好的程序员,肯定绕不开模仿这条路.之所以做出这么一个决定,也是想提高自己写框架的能力,逻辑思维能力,扩展知识面.同时也能够给那些想了解这些框架的同学一些基本的解释.何乐而不为呢? 解读方法 对于框架的源码解读,我个人的习惯是先看头文件,先从头文件最简单的开始解读,也就是说首先看不…