xticks,yticks】的更多相关文章

原本的图片如下所示: 如果加上这样的语句: import matplotlib.pyplot as plt plt.xticks([]),plt.yticks([]) 显示结果就为:…
K-均值聚类算法 聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中.K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成. K-均值算法 算法思想 K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点. 主要步骤: 随机确定k个初始点作为质心 对数据集中的每个数据点找到距离最近的簇 对于每一个簇,计算簇中所有点的均值并将均值作为质心 重复步骤2,直到任意一个点的簇分配结果不变 具体实现 from numpy impo…
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.com/83563/”中发现 # 原内容有少量笔误,并且对入门学友缺少一些信息.于是笔者做了增补,主要有: # 1.查询并简述了涉及的大部分算法: # 2.添加了连接或资源供进一步查询: # 3.增加了一些lib库的基本操作及说明: # 4.增加了必须必要的python的部分语法说明: # 5.增加了对…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's start by importing and printing its description import sklearn as sk import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fe…
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可): 2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离:把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离: 3 根据二维数组保存的数据,重新计算每个聚簇新的质心: 4 迭代2 和 3,直到收敛…
Python实现CART(基尼指数) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 st=>start: 开始 e=>end op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否建树完成 su=>subroutine: 递归建树 op3=>operation: 选择基尼指数最小的为判决点 op4=>…
Python实现C4.5(信息增益率) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 st=>start: 开始 e=>end op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否建树完成 su=>subroutine: 递归建树 op3=>operation: 选择熵增益率最大的为判决点 op4=&g…
Python实现ID3(信息增益) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 st=>start: 开始 e=>end op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否建树完成 su=>subroutine: 递归建树 op3=>operation: 选择熵最大的为判决点 op4=>ope…
Introduction: 分类与回归树(classification and regression tree, CART)模型由Breiman等人在1984年提出,CART同样由特征选择.树的生成及剪枝组成,既可以用于分类也可以用于回归,以下简要讨论树生成部分,在随后的博文中再探讨树剪枝的问题. Algorithm: step . 分别计算所有特征中各个分类的基尼系数 step 2. 选择有最小基尼系数的特征作为最优切分点,因$Gini(D,A_i=j)$最小,所以$A_i=j$作为最优切割点…