Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋转到树根的位置,这样就使得Splay Tree天生有着一种类似缓存的能力,因为每次被查找到的节点都会被搬到树根的位置,所以当80%的情况下我们需要查找的元素都是某个固定的节点,或者是一部分特定的节点时,那么在很多时候,查找的效率会是O(1)的效率!当然如果查找的节点是很均匀地分布在不同的地方时,Sp…
虽然官方解释是这题目里的树看作无向无环图,从答案来看还是在“以1作为根节点”这一前提下进行的,这棵树搭建好以后,从叶节点开始访问,一直推到根节点即可——很像动态规划的“自底向上”. 但这棵树的搭建堪忧:给出的边不知道哪边更接近根节点.所以我给出的方案干脆在两个顶点都将对方加成孩子,等到访问的时候再作处理,根据从1这个根节点开始访问这个特性,额外加一个“isVisited"来做区分. 然后利用栈对树进行非递归访问 /** * For best-coder problem 3 */ #include…
[SinGuLaRiTy-1010]Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. Some Method Are Reprinted From 杨思雨-<伸展树的基本操作与应用> 引言 二叉查找树(Binary Search Tree)能够支持多种动态集合操作.因此,在信息学竞赛中,二叉排序树起着非常重要的作用,它可以被用来表示有序集合.建立索引或优先队列等.作用于二叉查找树上的基本操作的时间是与树的高度成正比的.对一个含 n各节点…
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后,学习伸展树是一件相当容易的事情.和以往一样,本文会先对伸展树的理论知识进行简单介绍,然后给出C语言的实现.后序再分别给出C++和Java版本的实现:这3种实现方式的原理都一样,选择其中之一进行了解即可.若文章有错误或不足的地方,希望您能不吝指出! 目录1. 伸展树的介绍2. 伸展树的C实现3. 伸展树的C测试…
概要 上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树.本章是伸展树的C++实现,后续再给出Java版本.还是那句老话,它们的原理都一样,择其一了解即可. 目录1. 伸展树的介绍2. 伸展树的C++实现(完整源码)3. 伸展树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3604258.html 更多内容: 数据结构与算法系列 目录 (01) 伸展树(一)之 图文解析 和 C语言的实现(02) 伸展树(二)之 C++的实现(0…
 一.介绍 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由Daniel Sleator和Robert Tarjan创造.(01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x].如果y是x的左子树中的一个结点,则key[y] <= key[x]:如果y是x的右子树的一个结点,则key[y] >= key[x].(02) 除了拥有二叉查找树的性质之外…
归并排序(非递归):自底向上 public class MergeSort { /** * @param arr 待排序的数组 * @param left 本次归并的左边界 * @param mid 本次归并的中间位置,也就是分界线 * @param right 本次归并的右边界 * @param <T> 泛型 * @local aux 辅助空间(Auxiliary Space) */ private static <T extends Comparable<? super T&g…
文字转载自:http://www.cnblogs.com/vamei 代码转载自:http://www.blogjava.net/javacap/archive/2007/12/19/168627.html 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次搜索的复杂度为n的量级.AVL树通过动态平衡树的深度,单次搜索的复杂度为log(n) (以上参考纸上谈兵 AVL树).我们下面看伸展树(splay tree),它对于m次连续搜索操作有很好的效率. 伸展树会在一…
题目描写叙述 Description Tiger近期被公司升任为营业部经理.他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额. 分析营业情况是一项相当复杂的工作.因为节假日,大减价或者是其它情况的时候,营业额会出现一定的波动,当然一定的波动是可以接受的,可是在某些时候营业额突变得非常高或是非常低.这就证明公司此时的经营状况出现了问题.经济管理学上定义了一种最小波动值来衡量这样的情况: 该天的最小波动值 = m…
优点:伸展树(splay tree)是一种能自我调整的二叉搜索树(BST).虽然某一次的访问操作所花费的时间比较长,但是平摊(amortized) 之后的访问操作(例如旋转)时间能达到O(logn)的复杂度.对于某一个被访问的节点,在接下来的一段时间内再次频繁访问它(90%的情况下是这样的,即符合90-10规则,类似于CPU内或磁盘的cache设计原理)的应用模式来说,伸展树是一种很理想的数据结构.另外一点与其他平衡二叉树的区别是,伸展树不需要存储任何像AVL树中平衡因子(balance fac…