Adaboost算法结合Haar-like特征】的更多相关文章

讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用 AdaBoost算法将用三节课来讲,ANN.SVM.AdaBoost这三种算法都是用三节课来讲,因为这三种算法都非常重要,都有一些成功的应用.AdaBoost和SVM一样整个理论的根基是非常完善的,而且他们都是从1995年左右开始出现,在出现的十几年里边他们都得到了成功的应用. 随即森林它是一种称为Baggi…
Adaboost算法结合Haar-like特征 一.Haar-like特征 目前通常使用的Haar-like特征主要包括Paul Viola和Michal Jones在人脸检测中使用的由Papageorgiou C首先提出的原始矩形特征和Rainer Lienhart 和 Jochen Maydt提出的扩展矩形特征. 图1.Haar-like特征 Haar-like特征值的计算就是用图中矩形模板中白色矩形内所有像素值的和减去黑色矩形内所有像素值的和.Haar-like特征可以有效的提取图像的纹理…
原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上找到的所有的AdaBoost的简介都不是很清楚,让我看看头脑发昏,所以在这里打算花费比较长的时间做一个关于AdaBoost算法的详细总结.希望能对以后用AdaBoost的同学有所帮助.而且给出了关于AdaBoost实现的一些代码.因为会导致篇幅太长,所以这里把文章分开了,还请见谅. 第二部分的地址请…
  AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示方法——Haar-like矩形特征   矩形特征的值是所有白色矩形中点的亮度值的和减去所有灰色矩形中点的亮度值的和,所得到的差 具体特征可以用一个五元组…
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. AdaBoost算法它最典型的应用是视觉的目标检测,比如说人脸检测.行人检测.车辆检测等等.在深度学习流行之前,用这些简单的特征加上AdaBoost分类器来做目标检测,始终是我们工业界的一个主流的方案,在学术界里边它发的论文也是最多的. 大纲: 实验环节应用简介VJ框架简介分类器级联Haar特征训练算法的原…
一 Boosting 算法的起源 boost 算法系列的起源来自于PAC Learnability(PAC 可学习性).这套理论主要研究的是什么时候一个问题是可被学习的,当然也会探讨针对可学习的问题的具体的学习算法.这套理论是由Valiant提出来的,也因此(还有其他贡献哈)他获得了2010年的图灵奖.这里也贴出Valiant的头像,表示下俺等菜鸟的膜拜之情.哈哈哈 PAC 定义了学习算法的强弱   弱学习算法---识别错误率小于1/2(即准确率仅比随机猜测略高的学习算法)   强学习算法---…
一.积分图介绍 定义:图像左上方的像素点值的和: 在Adaboost算法中可用于加速计算Haar或MB-LBP特征值,如下图: 二.代码实现 #include <opencv/highgui.h> #include <opencv/cv.h> #include <opencv2/imgproc/imgproc_c.h> using namespace cv; int calcIntImage(unsigned char *pucSrcImage, unsigned in…
三 Adaboost 算法 AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器.(很多博客里说的三个臭皮匠赛过诸葛亮) 算法本身是改变数据分布实现的,它根据每次训练集之中的每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改权值的新数据送给下层分类器进行训练,然后将每次训练得到的分类器融合起来,作为最后的决策分类器. 完整的adaboost算法如下 简单来说,Adaboost…
1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本思路 提升方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当(按照一定权重)的综合(例如线性组合加法模型)所得出的判断,要比其中任何一个专家单独的判断好 历史上,Kearns和Valiant首先提出了“强可学习(strongly learnable)”和“弱可学习(weekly l…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(boosting)系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 一 回顾boosting算法的基本原理 AdaBoost是典型的Boosting算法,属于Boosting家族的一员.…