首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
- > 动规讲解基础讲解八——正整数分组
】的更多相关文章
- > 动规讲解基础讲解一——01背包(模板)
作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重为m的背包,我们选择一些物品放入背包,显然放入背包的总重量不超过m.我们要求选择物品的总价值最大,请问如何选择?这里我们假设所有出现的数都是正整数. 第一想法是? (1) 枚举?万能的枚举啊.但对于n件物品,每件都可以选择取或者不取,总的可能性有2n, n = 30就大约已经有10亿种可能了!枚举…
- > 动规讲解基础讲解八——正整数分组
将一堆正整数分为2组,要求2组的和相差最小.例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 整数个数n<=100,所有整数的和<=10000 初看题目,第一想到贪心.怎么贪?排序,每次把数放到“最有利”的一边,最有利指的是每次都把数放到使得结果差值尽可能小的那边.这样的方法显然前两个数只能分到不同的组了,这是不对的.比如{1,2,3},这种贪心会把1和2分开,显然得不到最优解. 最优解是{1,2}在一起,3自己在一组. 是不是如果找到一个…
- > 动规讲解基础讲解五——最长公共子序列问题
一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列. 例如: 对序列 1,3,5,4,2,6,8,7来说,序列3,4,8,7 是它的一个子序列.对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列. 请注意:子序列不是子集,它和原始序列的元素顺序是相关的. (2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它…
- > 动规讲解基础讲解四——矩阵取数
给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵.走过的数的总和作为你的得分,求最大的得分. 初看此题,你的思路是什么? (1) 贪心? 先走到大的数再说?看这个例子: 无论你以什么方式走到3,总和都是1 + 1 + 3 + 1 + 1 + 1 + 1 = 9我们为了1个3,放弃了那么多个2, 不值啊.如果我们放弃3而走那些2, 得到的和是1 + 1 + 2 + 2 + 2 +…
- > 动规讲解基础讲解六——编辑距离问题
给定两个字符串S和T,对于T我们允许三种操作: (1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S? 例如: S= “ABCF” T = “DBFG” 那么我们可以 (1) 把D改为A(2) 删掉G(3) 加入C 所以答案是3. 分析: 这个最少的操作次数,通常被称之为编辑距离.“编辑距离”一次本身具有最短的意思在里面.因为题目有“最短”这样的关键词,首先我们想到的是BFS.是的,当S的距离为m, T的距离为n的时候,我…
- > 动规讲解基础讲解七——最长单增子序列
(LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列{1,6,3,5,4},答案是3,因为{1,3,4}和{1,3,5}就是长度最长的两个单增子序列. 处看此题,怎么做? 万能的枚举?枚举全部2^n个子序列,找出最长的,固然可以,就是复杂度太高.我们为什么要枚举呢?因为要知道取了哪些数,其实我们只需要考虑上一个数和取了几个数就可以了吧?因为单增的意思…
- > 动规讲解基础讲解四——最大子段和问题
给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大? 例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13.和为20. 看见这个问题你的第一反应是用什么算法? (1) 枚举?对,枚举是万能的!枚举什么?子数组的位置!好枚举一个开头位置i,一个结尾位置j>=i,再求a[i..j]之间所有数的和,找出最大的就可以啦.好的,时间复杂度? (1.1)枚举i,O(n)(1.2)枚举j,O(n)(1.3)求和a[i..…
- > 动规讲解基础讲解三——混合背包(背包模板)
将01背包,完全背包,和多重完全背包问题结合起来,那么就是混合三种背的问题 根据三种背包的思想,那么可以得到混合三种背包的问题可以这样子求解 for(int i=1; i<=N; ++i) if(第i件物品是01背包) zeroOnePack(c[i],w[i]); else if(第i件物品是完全背包) completePack(c[i],w[i]); else if(第i件物品是多重完全背包) multiplePack(c[i],w[i],n[i]); 这样能得到最优解的原因是,因为前一层已…
Verilog语法基础讲解之参数化设计
Verilog语法基础讲解之参数化设计 在Verilog语法中,可以实现参数化设计.所谓参数化设计,就是在一个功能模块中,对于一个常量,其值在不同的应用场合需要设置为不同的置,则将此值在设计时使用parameter 关键字声明,那么在上层模块例化使用该功能模块时,可以根据具体需求重新配置该常量的值,从而实现不同应用场合对对应常量的灵活调整. 以下为使用Verilog设计的一个控制LED闪烁灯的模块代码: 01 module counter(Clk,Rst_n,led); 02…
原生AJAX基础讲解及兼容处理
原文:原生AJAX基础讲解及兼容处理 AJAX = Asynchronous JavaScript and XML (异步的JavaScript和XML). AJAX不是新技术 ,但却是热门的技术.它可以在不重载(刷新)整个页面的情况下与服务器进行数据交互并更新网页模块. AJAX的优点有很多:可以局部刷新.按需加载,这样就减轻了服务器的数据流量.并且在页面更新的同时,用户可以浏览器网页的其它内容而不受影响,也减轻了结构负担.AJAX也不是万能的,在有以上优点的同时SEO也受到了影响. 在学习A…