这显然是一道概率的题目(废话) 设发\(f[i]\)表示买到第\(i\)张邮票还需要购买的期望次数,\(g[i]\)表示买到第\(i\)张邮票还需要期望花费的钱. 那么答案显然为\(g[0]\),我们来考虑怎么转移. 对于\(f[i]\),有三种情况: 现在有\(\frac{i}{n}\)的几率会买到重复的邮票,即\(f[i] \times \frac{i}{n}\). 现在有\(\frac{n-i}{n}\)的几率会买到新的邮票,即\(f[i+1] \times \frac{n-i}{n}\)…
题目链接: 神仙题QAQ 题目分析: 概率期望题是不可能会的,一辈子都不可能会的QAQ 这个题也太仙了 首先明确一下题意里面我感觉没太说清楚的地方,这里是抽到第\(i\)次要\(i\)元钱,不是抽到第\(i\)种不然就是一眼题了 我们定义两个数组,\(f[i]\)和\(g[i]\),分别表示现在取到第\(i\)张,要取完剩下的期望次数,以及现在取到第\(i\)张,要取完剩下的期望价格 对于\(f[i]\),首先显然\(f[n] = 0\), 然后考虑如何转移 抽一次有两种情况,抽到有的和没有的,…
题目背景 据说在红雾异变时,博丽灵梦单身前往红魔馆,用十分强硬的手段将事件解决了. 然而当时灵梦在Power达到MAX之前,不具有“上线收点”的能力,所以她想要知道她能收集多少P点,然而这个问题她答不上来,于是她找到了学OI的你. 题目描述 可以把游戏界面理解成一个N行M列的棋盘,有K个格子上有P点,其价值为val(i,j) 初始灵梦可以选择在第一行的任意一个格子出发,每秒她必须下移一格. 灵梦具有一个左右移动的速度T,可以使她每秒向左或右移动至多T格,也可以不移动,并且不能折返.移动可视为瞬间…
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师)的掌握程度 考完试有人说这题是马拉车,吓死我了 首先,你把数据读入之后,先用一个大法师把以每个节点为根的子树的大小和权值都预处理出来,方便待会剪枝 然后,你对以每个节点为根的子树,都判断一下以下条件(这时刚才处理的东西就有用了) ① 左子树和右子树的节点数是否相等 ② 左子树和右子树的权值是否相等…
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种是通过分成 多块后在每块上打标记以实现快速区间修改,区间查询的一种算法.根号 分治与其思路相似,将原本若一次性解决时间复杂度很高的问题分块去解 决来降低整体的时间复杂度. 例题 以本题举例子哈希冲突 本题作为论文的第一道题目,是一道很好的练习题,注意,本体给出的 \(value[i]\) 是 \(i…
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 LCP 长度数组 \(p\). 数据范围:\(1\le |a|,|b|\le 2\times 10^7\). 蒟蒻语 别的题解为什么代码那么长.讲解那么复杂?蒟蒻不解,写篇易懂一点的,希望没有错误理解. 注意:蒟蒻的下标是从 \(0\) 开始的. 蒟蒻解 定义 \(z(i) (i>0)\):后缀 \(…
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \(\max_{k=l_i}^{r_i}h_k=g_i\).求满足条件的 \(h_i\) 的方案数膜 \(998244353\). 数据范围:\(1\le T\le 20\),\(1\le l_i\le r_i\le n\le 9\cdot 10^8\),\(1\le g_i\le A\le 9\cdo…
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积的讲解. 三位向量的运算 模长: 即向量长度,\(|\vec{a}|=\sqrt{x_a^2+y_a^2+z_a^2}\). 点积: 标量 \(\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos<\vec{a},\vec{b}>=x_ax_b+y_ay_b+z_a…
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) 互不相等.将糖果和药片一一对应,求 糖果能量大于药片 比 药片能量大于糖果 多 \(k\) 组的方案数. 数据范围:\(1\le n\le 2000\),\(0\le k\le n\). 萌新初学二项式反演,这是第一道完全自己做出来的题,所以写篇题解庆祝并提升理解. 有 \(\frac{n+k}{2…
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\texttt{D x}\),删除第 \(x\) 个字母. \(\texttt{R x y}\),反转当前文本中的区间 \([x,y]\). \(\texttt{P x}\),输出初始文本中第 \(x\) 个字母在当前文本中的位置.特别地,若不存在,输出 \(0\). \(\texttt{T x}\),输…