spark Listener和metrics实现分析】的更多相关文章

在spark内部,rpc可以用来实现不同组件(Driver, executor,client)之间的远程交互.而在同一组件内,spark还有事件监听机制,如spark中各种指标的采集主要就是通过事件监听机制获取的.另外,本文也会spark中metrics的采集过程做一个简要分析. 1,spark事件监听机制 spark的事件监听主要是通过总线机制将不同的监听事件和 事件监听器连接起来的.总体设计如下图所示: SparkListenerEvent具体包含的事件很多,如SparkListenerSt…
转载自:https://yq.aliyun.com/articles/60196 摘要: Spark 事件体系的中枢是ListenerBus,由该类接受Event并且分发给各个Listener.MetricsSystem 则是一个为了衡量系统的各种指标的度量系统.Listener可以是MetricsSystem的信息来源之一.他们之间总体是一个互相补充的关系. 前言 监控是一个大系统完成后最重要的一部分.Spark整个系统运行情况是由ListenerBus以及MetricsSystem 来完成的…
继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法,receive方法中消息类型主要分为以下12种情况: (1)重新选择了新Leader,进行数据的恢复 (2)恢复完毕,重新创建Driver,完成资源的重新分配 (3)触发Leadership的选举 (4)Master注册新的Worker (5)Master注册新的App,然后重新分配资源 (6)Ex…
Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属性) 1.设置一个守护单线程的消息发送器, private val forwardMessageThread = ThreadUtils.newDaemonSingleThreadScheduledExecutor("master-forward-message-thread") 2.根据…
本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继续分析TaskScheduler和SchedulerBackend. 一.TaskScheduler和SchedulerBackend类结构和继承关系 之所以把这部分放在最前面,是想让大家在阅读后续文章时对TaskScheduler和SchedulerBackend是什么有一个概念.因为有些方法是从…
本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Action操作之前一系列Transform操作的关联关系,生成一个DAG,在后续的操作中,对DAG进行Stage划分,生成Task并最终运行.整个过程如下图所示,DAGScheduler用于对Application进行分析,然后根据各RDD之间的依赖关系划分Stage,根据这些划分好的Stage,对应…
一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(一)简述 这一节我们来看看一个Spark RPC中的运用实例--Spark的心跳机制.当然这次主要还是从代码的角度来看. 我们首先要知道Spark的心跳有什么用.心跳是分布式技术的基础,我们知道在Spark中,是有一个Master和众多的Worker,那么Master怎么知道每…
继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的代码比较简单,它只有一个main函数,同时,和AppClient一样,它也有一个ClientEndpoint,只是两者的用途不一样. 1.Client Client中唯一的main方法如下: def main(args: Array[String]) { if (!sys.props.contain…
继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, receive方法主要分为以下14种情况: (1)worker向master注册成功后,详见代码 (2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略,详见代码 (3)worker的工作空间的清理,详见代码 (4)更换master,详见代码 (5)worker注…
本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提供 API来像Spark一样进行批处理,但两者处理的基础是完全不同的.Flink把批处理当作流处理中的一种特殊情况.在Flink中,所有 的数据都看作流,是一种很好的抽象,因为这更接近于现实世界. 1.1 基本架构 下面我们介绍下Flink的基本架构,Flink系统的架构与Spark类似,是一个基于…