怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equiv a_n \pmod {m_n} \end{cases}\] 不保证 \(m\) 两两互素? 两两合并! 比方说 \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \end{cases}\] 就是 \[…
题面就是让你解同余方程组(模数不互质) 题解: 先考虑一下两个方程 x=r1 mod(m1) x=r2 mod (m2) 去掉mod x=r1+m1y1   ......1 x=r2+m2y2   ......2 1-2可以得到 m1y1-m2y2=r1-r2 形同ax+by=c形式,可以判无解或者解出一个y1的值 带回1式可得到一个x的解x0=r1-y1a1 通解为x=x0+k*lcm(m1,m2) 即x=x0 mod(lcm(m1,m2)) 令M=lcm(m1,m2) R=x0 所以x满足x…
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中r1,r2,--,rk互质 这种问题都有多解,每一个解都为最小的解加上若干个lcm(r1,r2,...,rk),这个不用我证了吧(-_-||) 解决这个问题的方法是构造法, 先构造k个数 满足, 这样就保证 ,但是由于 bi 乘了除 ri 以外所有 r,所以bi模其它的 r 都为 0, 再把所有 b…
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:Choose k different positive integers a1, a2, …, ak. For some n…
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 21651 Accepted: 7266 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative inte…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x,那么输出-1.不满足所有的ai互质. 题解 UPD(2018-08-07): 本题做法为扩展中国剩余定理. 我写了一篇证明:链接:https://www.cnblogs.com/zhouzhendong/p/exCRT.html 代码就不要看了,很久之前写的,太丑了. 代码 #include <cs…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证明和实现我是参考此大神的 代码: #include<iostream> using namespace std; #define MAXN 100000 typedef long long LL; LL m[MAXN],a[MAXN]; void extended_gcd(LL a,LL b,LL…
不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; inline ll read(){ ,f=; ;c=getchar();} +c-';c=getchar();} re…
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * m_2\) \(x_1 * m_1 + x_2 * m_2 = a _ 2 - a _ 1\)(因为正负号没影响嘛) 然后就可以exgcd解出来\(x_1, x_2\), 最后就可以得到\(x' = a_1 + x_1 * m_1, m' = lcm(m_1, m_2)\) 然后就不停合并就可以了…