题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树分治) 大力每个颜色维护一个并查集,就很像上面那道题了.但是存在一个问题:在处理线段树区间\([l,r]\)时,可能并不知道\(l\)处的修改是否成功,所以不知道\(l\)处修改的边具体是什么颜色的. 我的解决方案是:处理区间\([l,r]\)时忽略\(l\)处修改的边.先向左子树递归,递归到叶子时…
本题可化成更一般的问题:离线动态图询问连通性 当然可以利用它的特殊性质,采用在线线段树维护一些标记的方法 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总共有2C个城市和3C-2条道路. 小人国的交通状况非常槽糕.有的时候由于交通堵塞,两座城市之间的道路会变得不连通,直到拥堵解决,道路才会恢复畅通.初来咋到的你决心毛遂自荐到交通部某…
题目: BZOJ4025 分析: 定理:一个图是二分图的充要条件是不存在奇环. 先考虑一个弱化的问题:保证所有边出现的时间段不会交叉,只会包含或相离. 还是不会?再考虑一个更弱化的问题:边只会出现不会消失. 当加边的时候,若\((u,v)\)不连通:一定不会构成奇环,将它加入. 若\((u,v)\)已经联通,则不加入这条边,而是查询\(u\)和\(v\)两点间的距离.若为偶数则加上这条边后会形成奇环.一个奇环不可能分成数个偶环,所以从此以后都不再是二分图.若为奇数则直接忽略这条边,因为如果将来某…
题目传送门(内部题146) 输入格式 从$geography.in$读入数据. 第一行两个数$n,m$,表示有$n$个点,$m$个时刻.接下来$m$行每行三个数,要么是$1\ u\ v$,要么是$2\ u\ v$,分别表示添加一条无向边和删除一条无向边. 输出格式 输出答案到$geography.out$. 共$m$行,每行一个数表示连通块大小乘积$\mod 1,000,000,007$. 样例 样例输入: 5 61 1 31 2 31 1 21 4 51 3 42 3 4 样例输出: 2336…
UVA1455 - Kingdom(并查集 + 线段树) 题目链接 题目大意:一个平面内,给你n个整数点,两种类型的操作:road x y 把city x 和city y连接起来,line fnum (浮点数小数点一定是0.5) 查询y = fnum这条直线穿过了多少个州和city.州指的是连通的城市. 解题思路:用并查集记录城市之间是否连通,还有每一个州的y的上下界.建立坐标y的线段树,然后每次运行road操作的时候,对范围内的y坐标进行更新:更新须要分三种情况:两个州是相离,还是相交,还是包…
超级无敌巨牛逼并查集(带权并查集)https://vjudge.net/problem/UVALive-4487 带删点的加权并查集 https://vjudge.net/problem/UVA-11987 并查集+线段树进行修改与统计 https://vjudge.net/problem/UVALive-4730 线段树 https://vjudge.net/problem/UVALive-4108 暴力 线段树 https://vjudge.net/problem/UVA-12299 树状数…
思路: 1. 并查集+线段树合并 记得f[LCA]==LCA的时候 f[LCA]=fa[LCA] 2.LCT(并不会写啊...) //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; ; ],v[N*],tot,deep[N],num[N],f[N],fa[N][]; long long ans; int lca(int x,int y)…
Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconnected Connected Hint N<=100000 M<=200000 K<=100000 题目大意 给出一个有n个节点和m条边的图,然后有k个询问,每个询问是删掉一些边,然后判断图是否连通,询问之间互相独立. 连通性问题通常的做法是并查集,然而并查集不支持删边,但是可以撤销上次操作…
题目大意:有$n$个点,你需要操作$m$次.每次操作为加入/删除一条边. 问你每次操作后,这$n$个点构成的图是否是二分图. 数据范围:$n,m≤10^5$. 此题并没有强制在线,考虑离线做法. 一条边在某个时间被加入,然后又被删除. 设这条边出现的时间为$[l,r]$,我们开一棵线段树,在对应的区间上标记出这一条线段. 最后我们遍历整个线段树,把这些线段往并查集上加,同时维护当前点的颜色,然后简单判断下就没了. 这个并查集需要支持撤销操作,所以不能路径压缩,需要按秩合并 时间复杂度:$O(n\…
题目传送门 题意:训练指南P248 分析:第一个操作可以用并查集实现,保存某集合的最小高度和最大高度以及城市个数.运用线段树成端更新来统计一个区间高度的个数,此时高度需要离散化.这题两种数据结构一起使用,联系紧密. #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int M = 3 * N; const int INF = 0x3f3f3f3f; struct Point { int x, y…